Bench-scale methanol autothermal reformer for distributed hydrogen production

A bench-scale methanol autothermal reformer (ATR) for distributed proton exchange membrane fuel cell (PEMFC) power system has been developed. A coating of ZnO-Cr 2O 3/CeO 2-ZrO 2 mixed oxides on ceramic honeycombs was employed as the reforming catalyst. In order to avoid non-uniform distribution of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2008-05, Vol.139 (1), p.56-62
Hauptverfasser: Liu, Na, Yuan, Zhongshan, Wang, Congwei, Pan, Liwei, Wang, Sheng, Li, Shiying, Li, Deyi, Wang, Shudong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 62
container_issue 1
container_start_page 56
container_title Chemical engineering journal (Lausanne, Switzerland : 1996)
container_volume 139
creator Liu, Na
Yuan, Zhongshan
Wang, Congwei
Pan, Liwei
Wang, Sheng
Li, Shiying
Li, Deyi
Wang, Shudong
description A bench-scale methanol autothermal reformer (ATR) for distributed proton exchange membrane fuel cell (PEMFC) power system has been developed. A coating of ZnO-Cr 2O 3/CeO 2-ZrO 2 mixed oxides on ceramic honeycombs was employed as the reforming catalyst. In order to avoid non-uniform distribution of the reactants at the inlet of the reforming catalyst bed, a distributor has been designed by computational fluid dynamics (CFD) simulation. Thus, uniform distribution of the reactants can be achieved, which can lead to a good performance of the reformer. Based on the optimized reformer, a fuel processor comprised of an ATR unit, a water gas shift (WGS) unit, a CO preferential oxidation (PROX) unit and a fuel evaporator unit has been developed and successfully integrated with a 75 kWe class PEMFC stack. The test shows that 120 Nm 3 h −1 H 2-rich reformate can be provided by the methanol fuel processor, with 53 vol% H 2 and less than 20 ppm CO content, and the peak power output of the PEMFC system can attain 75.5 kWe during the 3-h operation of the integrated system. By using the anode offgas from the PEMFC stack to evaporate the fuel, the lower heating value (LHV) efficiency of the fuel processor can reach 96.5%.
doi_str_mv 10.1016/j.cej.2007.07.093
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_14879691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1385894707005438</els_id><sourcerecordid>14879691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-25373bf3f4355077f59e9c494786f4647fd8bfe9acca7535a9cbce48b60f4fa3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AG-96K01adqmwZMufsGKl72HNJ3YlLZZk1TYf2_KLh4dBmYO73y8D0I3BGcEk-q-zxT0WY4xy5bk9AStSM1oSnOSn8ae1mVa84Kdowvve4xxxQlfoY8nmFSXeiUHSEYInZzskMg52NCBG-WQONDWjeCSWJLW-OBMMwdok27fOvsFU7Jztp1VMHa6QmdaDh6uj_USbV-et-u3dPP5-r5-3KSK8jKkeUkZbTTVBS1LzJguOXBVxO_qShdVwXRbNxq4VEqykpaSq0ZBUTcV1oWW9BLdHdbGy98z-CBG4xUMg5zAzl6QomY8-otCchAqZ72PTsTOmVG6vSBYLNxELyI3sXATS3IaZ26Py-VCRTs5KeP_BnNMcR4j6h4OOohGfww44ZWJMKE1DlQQrTX_XPkF3eaEPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14879691</pqid></control><display><type>article</type><title>Bench-scale methanol autothermal reformer for distributed hydrogen production</title><source>Elsevier ScienceDirect Journals</source><creator>Liu, Na ; Yuan, Zhongshan ; Wang, Congwei ; Pan, Liwei ; Wang, Sheng ; Li, Shiying ; Li, Deyi ; Wang, Shudong</creator><creatorcontrib>Liu, Na ; Yuan, Zhongshan ; Wang, Congwei ; Pan, Liwei ; Wang, Sheng ; Li, Shiying ; Li, Deyi ; Wang, Shudong</creatorcontrib><description>A bench-scale methanol autothermal reformer (ATR) for distributed proton exchange membrane fuel cell (PEMFC) power system has been developed. A coating of ZnO-Cr 2O 3/CeO 2-ZrO 2 mixed oxides on ceramic honeycombs was employed as the reforming catalyst. In order to avoid non-uniform distribution of the reactants at the inlet of the reforming catalyst bed, a distributor has been designed by computational fluid dynamics (CFD) simulation. Thus, uniform distribution of the reactants can be achieved, which can lead to a good performance of the reformer. Based on the optimized reformer, a fuel processor comprised of an ATR unit, a water gas shift (WGS) unit, a CO preferential oxidation (PROX) unit and a fuel evaporator unit has been developed and successfully integrated with a 75 kWe class PEMFC stack. The test shows that 120 Nm 3 h −1 H 2-rich reformate can be provided by the methanol fuel processor, with 53 vol% H 2 and less than 20 ppm CO content, and the peak power output of the PEMFC system can attain 75.5 kWe during the 3-h operation of the integrated system. By using the anode offgas from the PEMFC stack to evaporate the fuel, the lower heating value (LHV) efficiency of the fuel processor can reach 96.5%.</description><identifier>ISSN: 1385-8947</identifier><identifier>EISSN: 1873-3212</identifier><identifier>DOI: 10.1016/j.cej.2007.07.093</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Bench-scale ; Catalysis ; Catalytic reactions ; CFD ; Chemical engineering ; Chemistry ; Distributor ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; General and physical chemistry ; Heat exchangers and evaporators ; Integration ; Methanol autothermal reformer ; PEMFC ; Reactors ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Chemical engineering journal (Lausanne, Switzerland : 1996), 2008-05, Vol.139 (1), p.56-62</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-25373bf3f4355077f59e9c494786f4647fd8bfe9acca7535a9cbce48b60f4fa3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1385894707005438$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20302222$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Na</creatorcontrib><creatorcontrib>Yuan, Zhongshan</creatorcontrib><creatorcontrib>Wang, Congwei</creatorcontrib><creatorcontrib>Pan, Liwei</creatorcontrib><creatorcontrib>Wang, Sheng</creatorcontrib><creatorcontrib>Li, Shiying</creatorcontrib><creatorcontrib>Li, Deyi</creatorcontrib><creatorcontrib>Wang, Shudong</creatorcontrib><title>Bench-scale methanol autothermal reformer for distributed hydrogen production</title><title>Chemical engineering journal (Lausanne, Switzerland : 1996)</title><description>A bench-scale methanol autothermal reformer (ATR) for distributed proton exchange membrane fuel cell (PEMFC) power system has been developed. A coating of ZnO-Cr 2O 3/CeO 2-ZrO 2 mixed oxides on ceramic honeycombs was employed as the reforming catalyst. In order to avoid non-uniform distribution of the reactants at the inlet of the reforming catalyst bed, a distributor has been designed by computational fluid dynamics (CFD) simulation. Thus, uniform distribution of the reactants can be achieved, which can lead to a good performance of the reformer. Based on the optimized reformer, a fuel processor comprised of an ATR unit, a water gas shift (WGS) unit, a CO preferential oxidation (PROX) unit and a fuel evaporator unit has been developed and successfully integrated with a 75 kWe class PEMFC stack. The test shows that 120 Nm 3 h −1 H 2-rich reformate can be provided by the methanol fuel processor, with 53 vol% H 2 and less than 20 ppm CO content, and the peak power output of the PEMFC system can attain 75.5 kWe during the 3-h operation of the integrated system. By using the anode offgas from the PEMFC stack to evaporate the fuel, the lower heating value (LHV) efficiency of the fuel processor can reach 96.5%.</description><subject>Applied sciences</subject><subject>Bench-scale</subject><subject>Catalysis</subject><subject>Catalytic reactions</subject><subject>CFD</subject><subject>Chemical engineering</subject><subject>Chemistry</subject><subject>Distributor</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>General and physical chemistry</subject><subject>Heat exchangers and evaporators</subject><subject>Integration</subject><subject>Methanol autothermal reformer</subject><subject>PEMFC</subject><subject>Reactors</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>1385-8947</issn><issn>1873-3212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78AG-96K01adqmwZMufsGKl72HNJ3YlLZZk1TYf2_KLh4dBmYO73y8D0I3BGcEk-q-zxT0WY4xy5bk9AStSM1oSnOSn8ae1mVa84Kdowvve4xxxQlfoY8nmFSXeiUHSEYInZzskMg52NCBG-WQONDWjeCSWJLW-OBMMwdok27fOvsFU7Jztp1VMHa6QmdaDh6uj_USbV-et-u3dPP5-r5-3KSK8jKkeUkZbTTVBS1LzJguOXBVxO_qShdVwXRbNxq4VEqykpaSq0ZBUTcV1oWW9BLdHdbGy98z-CBG4xUMg5zAzl6QomY8-otCchAqZ72PTsTOmVG6vSBYLNxELyI3sXATS3IaZ26Py-VCRTs5KeP_BnNMcR4j6h4OOohGfww44ZWJMKE1DlQQrTX_XPkF3eaEPA</recordid><startdate>20080515</startdate><enddate>20080515</enddate><creator>Liu, Na</creator><creator>Yuan, Zhongshan</creator><creator>Wang, Congwei</creator><creator>Pan, Liwei</creator><creator>Wang, Sheng</creator><creator>Li, Shiying</creator><creator>Li, Deyi</creator><creator>Wang, Shudong</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20080515</creationdate><title>Bench-scale methanol autothermal reformer for distributed hydrogen production</title><author>Liu, Na ; Yuan, Zhongshan ; Wang, Congwei ; Pan, Liwei ; Wang, Sheng ; Li, Shiying ; Li, Deyi ; Wang, Shudong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-25373bf3f4355077f59e9c494786f4647fd8bfe9acca7535a9cbce48b60f4fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Bench-scale</topic><topic>Catalysis</topic><topic>Catalytic reactions</topic><topic>CFD</topic><topic>Chemical engineering</topic><topic>Chemistry</topic><topic>Distributor</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>General and physical chemistry</topic><topic>Heat exchangers and evaporators</topic><topic>Integration</topic><topic>Methanol autothermal reformer</topic><topic>PEMFC</topic><topic>Reactors</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Na</creatorcontrib><creatorcontrib>Yuan, Zhongshan</creatorcontrib><creatorcontrib>Wang, Congwei</creatorcontrib><creatorcontrib>Pan, Liwei</creatorcontrib><creatorcontrib>Wang, Sheng</creatorcontrib><creatorcontrib>Li, Shiying</creatorcontrib><creatorcontrib>Li, Deyi</creatorcontrib><creatorcontrib>Wang, Shudong</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Na</au><au>Yuan, Zhongshan</au><au>Wang, Congwei</au><au>Pan, Liwei</au><au>Wang, Sheng</au><au>Li, Shiying</au><au>Li, Deyi</au><au>Wang, Shudong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bench-scale methanol autothermal reformer for distributed hydrogen production</atitle><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle><date>2008-05-15</date><risdate>2008</risdate><volume>139</volume><issue>1</issue><spage>56</spage><epage>62</epage><pages>56-62</pages><issn>1385-8947</issn><eissn>1873-3212</eissn><abstract>A bench-scale methanol autothermal reformer (ATR) for distributed proton exchange membrane fuel cell (PEMFC) power system has been developed. A coating of ZnO-Cr 2O 3/CeO 2-ZrO 2 mixed oxides on ceramic honeycombs was employed as the reforming catalyst. In order to avoid non-uniform distribution of the reactants at the inlet of the reforming catalyst bed, a distributor has been designed by computational fluid dynamics (CFD) simulation. Thus, uniform distribution of the reactants can be achieved, which can lead to a good performance of the reformer. Based on the optimized reformer, a fuel processor comprised of an ATR unit, a water gas shift (WGS) unit, a CO preferential oxidation (PROX) unit and a fuel evaporator unit has been developed and successfully integrated with a 75 kWe class PEMFC stack. The test shows that 120 Nm 3 h −1 H 2-rich reformate can be provided by the methanol fuel processor, with 53 vol% H 2 and less than 20 ppm CO content, and the peak power output of the PEMFC system can attain 75.5 kWe during the 3-h operation of the integrated system. By using the anode offgas from the PEMFC stack to evaporate the fuel, the lower heating value (LHV) efficiency of the fuel processor can reach 96.5%.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cej.2007.07.093</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1385-8947
ispartof Chemical engineering journal (Lausanne, Switzerland : 1996), 2008-05, Vol.139 (1), p.56-62
issn 1385-8947
1873-3212
language eng
recordid cdi_proquest_miscellaneous_14879691
source Elsevier ScienceDirect Journals
subjects Applied sciences
Bench-scale
Catalysis
Catalytic reactions
CFD
Chemical engineering
Chemistry
Distributor
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cells
General and physical chemistry
Heat exchangers and evaporators
Integration
Methanol autothermal reformer
PEMFC
Reactors
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
title Bench-scale methanol autothermal reformer for distributed hydrogen production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A19%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bench-scale%20methanol%20autothermal%20reformer%20for%20distributed%20hydrogen%20production&rft.jtitle=Chemical%20engineering%20journal%20(Lausanne,%20Switzerland%20:%201996)&rft.au=Liu,%20Na&rft.date=2008-05-15&rft.volume=139&rft.issue=1&rft.spage=56&rft.epage=62&rft.pages=56-62&rft.issn=1385-8947&rft.eissn=1873-3212&rft_id=info:doi/10.1016/j.cej.2007.07.093&rft_dat=%3Cproquest_cross%3E14879691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14879691&rft_id=info:pmid/&rft_els_id=S1385894707005438&rfr_iscdi=true