Bench-scale methanol autothermal reformer for distributed hydrogen production
A bench-scale methanol autothermal reformer (ATR) for distributed proton exchange membrane fuel cell (PEMFC) power system has been developed. A coating of ZnO-Cr 2O 3/CeO 2-ZrO 2 mixed oxides on ceramic honeycombs was employed as the reforming catalyst. In order to avoid non-uniform distribution of...
Gespeichert in:
Veröffentlicht in: | Chemical engineering journal (Lausanne, Switzerland : 1996) Switzerland : 1996), 2008-05, Vol.139 (1), p.56-62 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 62 |
---|---|
container_issue | 1 |
container_start_page | 56 |
container_title | Chemical engineering journal (Lausanne, Switzerland : 1996) |
container_volume | 139 |
creator | Liu, Na Yuan, Zhongshan Wang, Congwei Pan, Liwei Wang, Sheng Li, Shiying Li, Deyi Wang, Shudong |
description | A bench-scale methanol autothermal reformer (ATR) for distributed proton exchange membrane fuel cell (PEMFC) power system has been developed. A coating of ZnO-Cr
2O
3/CeO
2-ZrO
2 mixed oxides on ceramic honeycombs was employed as the reforming catalyst. In order to avoid non-uniform distribution of the reactants at the inlet of the reforming catalyst bed, a distributor has been designed by computational fluid dynamics (CFD) simulation. Thus, uniform distribution of the reactants can be achieved, which can lead to a good performance of the reformer. Based on the optimized reformer, a fuel processor comprised of an ATR unit, a water gas shift (WGS) unit, a CO preferential oxidation (PROX) unit and a fuel evaporator unit has been developed and successfully integrated with a 75
kWe class PEMFC stack. The test shows that 120
Nm
3
h
−1 H
2-rich reformate can be provided by the methanol fuel processor, with 53
vol% H
2 and less than 20
ppm CO content, and the peak power output of the PEMFC system can attain 75.5
kWe during the 3-h operation of the integrated system. By using the anode offgas from the PEMFC stack to evaporate the fuel, the lower heating value (LHV) efficiency of the fuel processor can reach 96.5%. |
doi_str_mv | 10.1016/j.cej.2007.07.093 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_14879691</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1385894707005438</els_id><sourcerecordid>14879691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-25373bf3f4355077f59e9c494786f4647fd8bfe9acca7535a9cbce48b60f4fa3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AG-96K01adqmwZMufsGKl72HNJ3YlLZZk1TYf2_KLh4dBmYO73y8D0I3BGcEk-q-zxT0WY4xy5bk9AStSM1oSnOSn8ae1mVa84Kdowvve4xxxQlfoY8nmFSXeiUHSEYInZzskMg52NCBG-WQONDWjeCSWJLW-OBMMwdok27fOvsFU7Jztp1VMHa6QmdaDh6uj_USbV-et-u3dPP5-r5-3KSK8jKkeUkZbTTVBS1LzJguOXBVxO_qShdVwXRbNxq4VEqykpaSq0ZBUTcV1oWW9BLdHdbGy98z-CBG4xUMg5zAzl6QomY8-otCchAqZ72PTsTOmVG6vSBYLNxELyI3sXATS3IaZ26Py-VCRTs5KeP_BnNMcR4j6h4OOohGfww44ZWJMKE1DlQQrTX_XPkF3eaEPA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14879691</pqid></control><display><type>article</type><title>Bench-scale methanol autothermal reformer for distributed hydrogen production</title><source>Elsevier ScienceDirect Journals</source><creator>Liu, Na ; Yuan, Zhongshan ; Wang, Congwei ; Pan, Liwei ; Wang, Sheng ; Li, Shiying ; Li, Deyi ; Wang, Shudong</creator><creatorcontrib>Liu, Na ; Yuan, Zhongshan ; Wang, Congwei ; Pan, Liwei ; Wang, Sheng ; Li, Shiying ; Li, Deyi ; Wang, Shudong</creatorcontrib><description>A bench-scale methanol autothermal reformer (ATR) for distributed proton exchange membrane fuel cell (PEMFC) power system has been developed. A coating of ZnO-Cr
2O
3/CeO
2-ZrO
2 mixed oxides on ceramic honeycombs was employed as the reforming catalyst. In order to avoid non-uniform distribution of the reactants at the inlet of the reforming catalyst bed, a distributor has been designed by computational fluid dynamics (CFD) simulation. Thus, uniform distribution of the reactants can be achieved, which can lead to a good performance of the reformer. Based on the optimized reformer, a fuel processor comprised of an ATR unit, a water gas shift (WGS) unit, a CO preferential oxidation (PROX) unit and a fuel evaporator unit has been developed and successfully integrated with a 75
kWe class PEMFC stack. The test shows that 120
Nm
3
h
−1 H
2-rich reformate can be provided by the methanol fuel processor, with 53
vol% H
2 and less than 20
ppm CO content, and the peak power output of the PEMFC system can attain 75.5
kWe during the 3-h operation of the integrated system. By using the anode offgas from the PEMFC stack to evaporate the fuel, the lower heating value (LHV) efficiency of the fuel processor can reach 96.5%.</description><identifier>ISSN: 1385-8947</identifier><identifier>EISSN: 1873-3212</identifier><identifier>DOI: 10.1016/j.cej.2007.07.093</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Bench-scale ; Catalysis ; Catalytic reactions ; CFD ; Chemical engineering ; Chemistry ; Distributor ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cells ; General and physical chemistry ; Heat exchangers and evaporators ; Integration ; Methanol autothermal reformer ; PEMFC ; Reactors ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Chemical engineering journal (Lausanne, Switzerland : 1996), 2008-05, Vol.139 (1), p.56-62</ispartof><rights>2007 Elsevier B.V.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-25373bf3f4355077f59e9c494786f4647fd8bfe9acca7535a9cbce48b60f4fa3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1385894707005438$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20302222$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Na</creatorcontrib><creatorcontrib>Yuan, Zhongshan</creatorcontrib><creatorcontrib>Wang, Congwei</creatorcontrib><creatorcontrib>Pan, Liwei</creatorcontrib><creatorcontrib>Wang, Sheng</creatorcontrib><creatorcontrib>Li, Shiying</creatorcontrib><creatorcontrib>Li, Deyi</creatorcontrib><creatorcontrib>Wang, Shudong</creatorcontrib><title>Bench-scale methanol autothermal reformer for distributed hydrogen production</title><title>Chemical engineering journal (Lausanne, Switzerland : 1996)</title><description>A bench-scale methanol autothermal reformer (ATR) for distributed proton exchange membrane fuel cell (PEMFC) power system has been developed. A coating of ZnO-Cr
2O
3/CeO
2-ZrO
2 mixed oxides on ceramic honeycombs was employed as the reforming catalyst. In order to avoid non-uniform distribution of the reactants at the inlet of the reforming catalyst bed, a distributor has been designed by computational fluid dynamics (CFD) simulation. Thus, uniform distribution of the reactants can be achieved, which can lead to a good performance of the reformer. Based on the optimized reformer, a fuel processor comprised of an ATR unit, a water gas shift (WGS) unit, a CO preferential oxidation (PROX) unit and a fuel evaporator unit has been developed and successfully integrated with a 75
kWe class PEMFC stack. The test shows that 120
Nm
3
h
−1 H
2-rich reformate can be provided by the methanol fuel processor, with 53
vol% H
2 and less than 20
ppm CO content, and the peak power output of the PEMFC system can attain 75.5
kWe during the 3-h operation of the integrated system. By using the anode offgas from the PEMFC stack to evaporate the fuel, the lower heating value (LHV) efficiency of the fuel processor can reach 96.5%.</description><subject>Applied sciences</subject><subject>Bench-scale</subject><subject>Catalysis</subject><subject>Catalytic reactions</subject><subject>CFD</subject><subject>Chemical engineering</subject><subject>Chemistry</subject><subject>Distributor</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cells</subject><subject>General and physical chemistry</subject><subject>Heat exchangers and evaporators</subject><subject>Integration</subject><subject>Methanol autothermal reformer</subject><subject>PEMFC</subject><subject>Reactors</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>1385-8947</issn><issn>1873-3212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78AG-96K01adqmwZMufsGKl72HNJ3YlLZZk1TYf2_KLh4dBmYO73y8D0I3BGcEk-q-zxT0WY4xy5bk9AStSM1oSnOSn8ae1mVa84Kdowvve4xxxQlfoY8nmFSXeiUHSEYInZzskMg52NCBG-WQONDWjeCSWJLW-OBMMwdok27fOvsFU7Jztp1VMHa6QmdaDh6uj_USbV-et-u3dPP5-r5-3KSK8jKkeUkZbTTVBS1LzJguOXBVxO_qShdVwXRbNxq4VEqykpaSq0ZBUTcV1oWW9BLdHdbGy98z-CBG4xUMg5zAzl6QomY8-otCchAqZ72PTsTOmVG6vSBYLNxELyI3sXATS3IaZ26Py-VCRTs5KeP_BnNMcR4j6h4OOohGfww44ZWJMKE1DlQQrTX_XPkF3eaEPA</recordid><startdate>20080515</startdate><enddate>20080515</enddate><creator>Liu, Na</creator><creator>Yuan, Zhongshan</creator><creator>Wang, Congwei</creator><creator>Pan, Liwei</creator><creator>Wang, Sheng</creator><creator>Li, Shiying</creator><creator>Li, Deyi</creator><creator>Wang, Shudong</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>20080515</creationdate><title>Bench-scale methanol autothermal reformer for distributed hydrogen production</title><author>Liu, Na ; Yuan, Zhongshan ; Wang, Congwei ; Pan, Liwei ; Wang, Sheng ; Li, Shiying ; Li, Deyi ; Wang, Shudong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-25373bf3f4355077f59e9c494786f4647fd8bfe9acca7535a9cbce48b60f4fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Bench-scale</topic><topic>Catalysis</topic><topic>Catalytic reactions</topic><topic>CFD</topic><topic>Chemical engineering</topic><topic>Chemistry</topic><topic>Distributor</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cells</topic><topic>General and physical chemistry</topic><topic>Heat exchangers and evaporators</topic><topic>Integration</topic><topic>Methanol autothermal reformer</topic><topic>PEMFC</topic><topic>Reactors</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Na</creatorcontrib><creatorcontrib>Yuan, Zhongshan</creatorcontrib><creatorcontrib>Wang, Congwei</creatorcontrib><creatorcontrib>Pan, Liwei</creatorcontrib><creatorcontrib>Wang, Sheng</creatorcontrib><creatorcontrib>Li, Shiying</creatorcontrib><creatorcontrib>Li, Deyi</creatorcontrib><creatorcontrib>Wang, Shudong</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Na</au><au>Yuan, Zhongshan</au><au>Wang, Congwei</au><au>Pan, Liwei</au><au>Wang, Sheng</au><au>Li, Shiying</au><au>Li, Deyi</au><au>Wang, Shudong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bench-scale methanol autothermal reformer for distributed hydrogen production</atitle><jtitle>Chemical engineering journal (Lausanne, Switzerland : 1996)</jtitle><date>2008-05-15</date><risdate>2008</risdate><volume>139</volume><issue>1</issue><spage>56</spage><epage>62</epage><pages>56-62</pages><issn>1385-8947</issn><eissn>1873-3212</eissn><abstract>A bench-scale methanol autothermal reformer (ATR) for distributed proton exchange membrane fuel cell (PEMFC) power system has been developed. A coating of ZnO-Cr
2O
3/CeO
2-ZrO
2 mixed oxides on ceramic honeycombs was employed as the reforming catalyst. In order to avoid non-uniform distribution of the reactants at the inlet of the reforming catalyst bed, a distributor has been designed by computational fluid dynamics (CFD) simulation. Thus, uniform distribution of the reactants can be achieved, which can lead to a good performance of the reformer. Based on the optimized reformer, a fuel processor comprised of an ATR unit, a water gas shift (WGS) unit, a CO preferential oxidation (PROX) unit and a fuel evaporator unit has been developed and successfully integrated with a 75
kWe class PEMFC stack. The test shows that 120
Nm
3
h
−1 H
2-rich reformate can be provided by the methanol fuel processor, with 53
vol% H
2 and less than 20
ppm CO content, and the peak power output of the PEMFC system can attain 75.5
kWe during the 3-h operation of the integrated system. By using the anode offgas from the PEMFC stack to evaporate the fuel, the lower heating value (LHV) efficiency of the fuel processor can reach 96.5%.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cej.2007.07.093</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1385-8947 |
ispartof | Chemical engineering journal (Lausanne, Switzerland : 1996), 2008-05, Vol.139 (1), p.56-62 |
issn | 1385-8947 1873-3212 |
language | eng |
recordid | cdi_proquest_miscellaneous_14879691 |
source | Elsevier ScienceDirect Journals |
subjects | Applied sciences Bench-scale Catalysis Catalytic reactions CFD Chemical engineering Chemistry Distributor Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells General and physical chemistry Heat exchangers and evaporators Integration Methanol autothermal reformer PEMFC Reactors Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry |
title | Bench-scale methanol autothermal reformer for distributed hydrogen production |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A19%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bench-scale%20methanol%20autothermal%20reformer%20for%20distributed%20hydrogen%20production&rft.jtitle=Chemical%20engineering%20journal%20(Lausanne,%20Switzerland%20:%201996)&rft.au=Liu,%20Na&rft.date=2008-05-15&rft.volume=139&rft.issue=1&rft.spage=56&rft.epage=62&rft.pages=56-62&rft.issn=1385-8947&rft.eissn=1873-3212&rft_id=info:doi/10.1016/j.cej.2007.07.093&rft_dat=%3Cproquest_cross%3E14879691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14879691&rft_id=info:pmid/&rft_els_id=S1385894707005438&rfr_iscdi=true |