Properties of the Duplex DNA-Dependent ATPase Activity of Escherichia coli RecA Protein and Its Role in Branch Migration

We have investigated the double-stranded DNA (dsDNA)-dependent ATPase activity of recA protein. This activity is distinguished from the single-stranded DNA (ssDNA)-dependent ATPase activity by the presence of a pronounced lag time before the onset of steady-state ATP hydrolysis. During the lag phase...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1987-05, Vol.84 (10), p.3127-3131
Hauptverfasser: Kowalczykowski, Stephen C., Clow, Jennifer, Krupp, Renee A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3131
container_issue 10
container_start_page 3127
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 84
creator Kowalczykowski, Stephen C.
Clow, Jennifer
Krupp, Renee A.
description We have investigated the double-stranded DNA (dsDNA)-dependent ATPase activity of recA protein. This activity is distinguished from the single-stranded DNA (ssDNA)-dependent ATPase activity by the presence of a pronounced lag time before the onset of steady-state ATP hydrolysis. During the lag phase there is little ATP hydrolysis. The duration of the lag phase, referred to as the lag time, is found to increase with the thermal stability of the dsDNA substrate. Increasing either the MgCl2or NaCl concentration increases the lag time, whereas increasing the temperature decreases the lag time. The lag time shows little dependence on recA protein concentration but is strongly dependent on ATP concentration. After the lag phase, a steady-state ATP hydrolysis rate is achieved that approaches the rate observed with ssDNA. The steady-state phase of the reaction is proportional to the concentration of recA protein-DNA complex and shows saturation behavior at ≈ 5 ± 1 base pairs per recA protein monomer. These results suggest that the lag phase represents a rate-limiting step in the dsDNA-dependent ATP hydrolysis reaction that requires a structural transition in the dsDNA and that involves a ternary complex of ATP, recA protein, and DNA. We propose that this transition involves the transient denaturation of the dsDNA to form regions of ssDNA. Elsewhere we demonstrate that the dsDNA-dependent ATPase activity is proportional to the rate of recA protein-catalyzed branch migration. We suggest that this activity is responsible for a polar polymerization that drives the branch migration reaction.
doi_str_mv 10.1073/pnas.84.10.3127
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_14762321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>29345</jstor_id><sourcerecordid>29345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-46610b2f766ac4253684049e7166b3b5fb103cbee57edf2f969122e177fc99163</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxSMEKtvCGQkJ5AOCU7b-ip0cOCzdApUKVFU5W4530rjKxsF2qu1_X4ddRXCBkzV6v3memZdlrwheEizZ6dDrsCx5KpaMUPkkWxBckVzwCj_NFhhTmZec8ufZcQh3GOOqKPFRdsQwY4IVi2x35d0APloIyDUotoDW49DBDq2_r_I1DNBvoI9odXOlA6CVifbexoeJPQ-mBW9NazUyrrPoGswKJb8Itke636CLGNC16wCl-pPXvWnRN3vrdbSuf5E9a3QX4OXhPcl-fj6_OfuaX_74cnG2usxNUcqYcyEIrmkjhdCG04KJkmNegSRC1KwumppgZmqAQsKmoU0lKkIpECkbU1VEsJPs4953GOstbExaxutODd5utX9QTlv1t9LbVt26e8UwLylJ_e8P_d79GiFEtbXBQNfpHtwYlJS8Kmka7H8g4VJQ9tvxdA8a70Lw0MzDEKymUNUUqir5VE-hpo43f-4w84cUk_7uoOtgdNdMp7ZhxkqGsaBlwj4csMl_Vud_VDN2XYRdTOTbf5IJeL0H7kJ0fiZoxXjBHgFhwcsr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14762321</pqid></control><display><type>article</type><title>Properties of the Duplex DNA-Dependent ATPase Activity of Escherichia coli RecA Protein and Its Role in Branch Migration</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kowalczykowski, Stephen C. ; Clow, Jennifer ; Krupp, Renee A.</creator><creatorcontrib>Kowalczykowski, Stephen C. ; Clow, Jennifer ; Krupp, Renee A.</creatorcontrib><description>We have investigated the double-stranded DNA (dsDNA)-dependent ATPase activity of recA protein. This activity is distinguished from the single-stranded DNA (ssDNA)-dependent ATPase activity by the presence of a pronounced lag time before the onset of steady-state ATP hydrolysis. During the lag phase there is little ATP hydrolysis. The duration of the lag phase, referred to as the lag time, is found to increase with the thermal stability of the dsDNA substrate. Increasing either the MgCl2or NaCl concentration increases the lag time, whereas increasing the temperature decreases the lag time. The lag time shows little dependence on recA protein concentration but is strongly dependent on ATP concentration. After the lag phase, a steady-state ATP hydrolysis rate is achieved that approaches the rate observed with ssDNA. The steady-state phase of the reaction is proportional to the concentration of recA protein-DNA complex and shows saturation behavior at ≈ 5 ± 1 base pairs per recA protein monomer. These results suggest that the lag phase represents a rate-limiting step in the dsDNA-dependent ATP hydrolysis reaction that requires a structural transition in the dsDNA and that involves a ternary complex of ATP, recA protein, and DNA. We propose that this transition involves the transient denaturation of the dsDNA to form regions of ssDNA. Elsewhere we demonstrate that the dsDNA-dependent ATPase activity is proportional to the rate of recA protein-catalyzed branch migration. We suggest that this activity is responsible for a polar polymerization that drives the branch migration reaction.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.84.10.3127</identifier><identifier>PMID: 3033635</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>Adenosine triphosphatases ; Adenosine Triphosphatases - metabolism ; Biochemistry ; Biological and medical sciences ; DNA ; DNA Helicases - metabolism ; Equilibrium flow ; Escherichia coli ; Escherichia coli - metabolism ; Fundamental and applied biological sciences. Psychology ; Genic rearrangement. Recombination. Transposable element ; Hydrolysis ; Kinetics ; Melting ; Molecular and cellular biology ; Molecular genetics ; Molecules ; Monomers ; Rec A Recombinases - metabolism ; Substrate Specificity ; Time dependence</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1987-05, Vol.84 (10), p.3127-3131</ispartof><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c587t-46610b2f766ac4253684049e7166b3b5fb103cbee57edf2f969122e177fc99163</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/84/10.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/29345$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/29345$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=8300628$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3033635$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kowalczykowski, Stephen C.</creatorcontrib><creatorcontrib>Clow, Jennifer</creatorcontrib><creatorcontrib>Krupp, Renee A.</creatorcontrib><title>Properties of the Duplex DNA-Dependent ATPase Activity of Escherichia coli RecA Protein and Its Role in Branch Migration</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We have investigated the double-stranded DNA (dsDNA)-dependent ATPase activity of recA protein. This activity is distinguished from the single-stranded DNA (ssDNA)-dependent ATPase activity by the presence of a pronounced lag time before the onset of steady-state ATP hydrolysis. During the lag phase there is little ATP hydrolysis. The duration of the lag phase, referred to as the lag time, is found to increase with the thermal stability of the dsDNA substrate. Increasing either the MgCl2or NaCl concentration increases the lag time, whereas increasing the temperature decreases the lag time. The lag time shows little dependence on recA protein concentration but is strongly dependent on ATP concentration. After the lag phase, a steady-state ATP hydrolysis rate is achieved that approaches the rate observed with ssDNA. The steady-state phase of the reaction is proportional to the concentration of recA protein-DNA complex and shows saturation behavior at ≈ 5 ± 1 base pairs per recA protein monomer. These results suggest that the lag phase represents a rate-limiting step in the dsDNA-dependent ATP hydrolysis reaction that requires a structural transition in the dsDNA and that involves a ternary complex of ATP, recA protein, and DNA. We propose that this transition involves the transient denaturation of the dsDNA to form regions of ssDNA. Elsewhere we demonstrate that the dsDNA-dependent ATPase activity is proportional to the rate of recA protein-catalyzed branch migration. We suggest that this activity is responsible for a polar polymerization that drives the branch migration reaction.</description><subject>Adenosine triphosphatases</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>DNA</subject><subject>DNA Helicases - metabolism</subject><subject>Equilibrium flow</subject><subject>Escherichia coli</subject><subject>Escherichia coli - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genic rearrangement. Recombination. Transposable element</subject><subject>Hydrolysis</subject><subject>Kinetics</subject><subject>Melting</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecules</subject><subject>Monomers</subject><subject>Rec A Recombinases - metabolism</subject><subject>Substrate Specificity</subject><subject>Time dependence</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxSMEKtvCGQkJ5AOCU7b-ip0cOCzdApUKVFU5W4530rjKxsF2qu1_X4ddRXCBkzV6v3memZdlrwheEizZ6dDrsCx5KpaMUPkkWxBckVzwCj_NFhhTmZec8ufZcQh3GOOqKPFRdsQwY4IVi2x35d0APloIyDUotoDW49DBDq2_r_I1DNBvoI9odXOlA6CVifbexoeJPQ-mBW9NazUyrrPoGswKJb8Itke636CLGNC16wCl-pPXvWnRN3vrdbSuf5E9a3QX4OXhPcl-fj6_OfuaX_74cnG2usxNUcqYcyEIrmkjhdCG04KJkmNegSRC1KwumppgZmqAQsKmoU0lKkIpECkbU1VEsJPs4953GOstbExaxutODd5utX9QTlv1t9LbVt26e8UwLylJ_e8P_d79GiFEtbXBQNfpHtwYlJS8Kmka7H8g4VJQ9tvxdA8a70Lw0MzDEKymUNUUqir5VE-hpo43f-4w84cUk_7uoOtgdNdMp7ZhxkqGsaBlwj4csMl_Vud_VDN2XYRdTOTbf5IJeL0H7kJ0fiZoxXjBHgFhwcsr</recordid><startdate>19870501</startdate><enddate>19870501</enddate><creator>Kowalczykowski, Stephen C.</creator><creator>Clow, Jennifer</creator><creator>Krupp, Renee A.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>C1K</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19870501</creationdate><title>Properties of the Duplex DNA-Dependent ATPase Activity of Escherichia coli RecA Protein and Its Role in Branch Migration</title><author>Kowalczykowski, Stephen C. ; Clow, Jennifer ; Krupp, Renee A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-46610b2f766ac4253684049e7166b3b5fb103cbee57edf2f969122e177fc99163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Adenosine triphosphatases</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>DNA</topic><topic>DNA Helicases - metabolism</topic><topic>Equilibrium flow</topic><topic>Escherichia coli</topic><topic>Escherichia coli - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genic rearrangement. Recombination. Transposable element</topic><topic>Hydrolysis</topic><topic>Kinetics</topic><topic>Melting</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecules</topic><topic>Monomers</topic><topic>Rec A Recombinases - metabolism</topic><topic>Substrate Specificity</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kowalczykowski, Stephen C.</creatorcontrib><creatorcontrib>Clow, Jennifer</creatorcontrib><creatorcontrib>Krupp, Renee A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kowalczykowski, Stephen C.</au><au>Clow, Jennifer</au><au>Krupp, Renee A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Properties of the Duplex DNA-Dependent ATPase Activity of Escherichia coli RecA Protein and Its Role in Branch Migration</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1987-05-01</date><risdate>1987</risdate><volume>84</volume><issue>10</issue><spage>3127</spage><epage>3131</epage><pages>3127-3131</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>We have investigated the double-stranded DNA (dsDNA)-dependent ATPase activity of recA protein. This activity is distinguished from the single-stranded DNA (ssDNA)-dependent ATPase activity by the presence of a pronounced lag time before the onset of steady-state ATP hydrolysis. During the lag phase there is little ATP hydrolysis. The duration of the lag phase, referred to as the lag time, is found to increase with the thermal stability of the dsDNA substrate. Increasing either the MgCl2or NaCl concentration increases the lag time, whereas increasing the temperature decreases the lag time. The lag time shows little dependence on recA protein concentration but is strongly dependent on ATP concentration. After the lag phase, a steady-state ATP hydrolysis rate is achieved that approaches the rate observed with ssDNA. The steady-state phase of the reaction is proportional to the concentration of recA protein-DNA complex and shows saturation behavior at ≈ 5 ± 1 base pairs per recA protein monomer. These results suggest that the lag phase represents a rate-limiting step in the dsDNA-dependent ATP hydrolysis reaction that requires a structural transition in the dsDNA and that involves a ternary complex of ATP, recA protein, and DNA. We propose that this transition involves the transient denaturation of the dsDNA to form regions of ssDNA. Elsewhere we demonstrate that the dsDNA-dependent ATPase activity is proportional to the rate of recA protein-catalyzed branch migration. We suggest that this activity is responsible for a polar polymerization that drives the branch migration reaction.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>3033635</pmid><doi>10.1073/pnas.84.10.3127</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1987-05, Vol.84 (10), p.3127-3131
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_14762321
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adenosine triphosphatases
Adenosine Triphosphatases - metabolism
Biochemistry
Biological and medical sciences
DNA
DNA Helicases - metabolism
Equilibrium flow
Escherichia coli
Escherichia coli - metabolism
Fundamental and applied biological sciences. Psychology
Genic rearrangement. Recombination. Transposable element
Hydrolysis
Kinetics
Melting
Molecular and cellular biology
Molecular genetics
Molecules
Monomers
Rec A Recombinases - metabolism
Substrate Specificity
Time dependence
title Properties of the Duplex DNA-Dependent ATPase Activity of Escherichia coli RecA Protein and Its Role in Branch Migration
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A56%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Properties%20of%20the%20Duplex%20DNA-Dependent%20ATPase%20Activity%20of%20Escherichia%20coli%20RecA%20Protein%20and%20Its%20Role%20in%20Branch%20Migration&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kowalczykowski,%20Stephen%20C.&rft.date=1987-05-01&rft.volume=84&rft.issue=10&rft.spage=3127&rft.epage=3131&rft.pages=3127-3131&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.84.10.3127&rft_dat=%3Cjstor_proqu%3E29345%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14762321&rft_id=info:pmid/3033635&rft_jstor_id=29345&rfr_iscdi=true