Properties of the Duplex DNA-Dependent ATPase Activity of Escherichia coli RecA Protein and Its Role in Branch Migration
We have investigated the double-stranded DNA (dsDNA)-dependent ATPase activity of recA protein. This activity is distinguished from the single-stranded DNA (ssDNA)-dependent ATPase activity by the presence of a pronounced lag time before the onset of steady-state ATP hydrolysis. During the lag phase...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 1987-05, Vol.84 (10), p.3127-3131 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3131 |
---|---|
container_issue | 10 |
container_start_page | 3127 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 84 |
creator | Kowalczykowski, Stephen C. Clow, Jennifer Krupp, Renee A. |
description | We have investigated the double-stranded DNA (dsDNA)-dependent ATPase activity of recA protein. This activity is distinguished from the single-stranded DNA (ssDNA)-dependent ATPase activity by the presence of a pronounced lag time before the onset of steady-state ATP hydrolysis. During the lag phase there is little ATP hydrolysis. The duration of the lag phase, referred to as the lag time, is found to increase with the thermal stability of the dsDNA substrate. Increasing either the MgCl2or NaCl concentration increases the lag time, whereas increasing the temperature decreases the lag time. The lag time shows little dependence on recA protein concentration but is strongly dependent on ATP concentration. After the lag phase, a steady-state ATP hydrolysis rate is achieved that approaches the rate observed with ssDNA. The steady-state phase of the reaction is proportional to the concentration of recA protein-DNA complex and shows saturation behavior at ≈ 5 ± 1 base pairs per recA protein monomer. These results suggest that the lag phase represents a rate-limiting step in the dsDNA-dependent ATP hydrolysis reaction that requires a structural transition in the dsDNA and that involves a ternary complex of ATP, recA protein, and DNA. We propose that this transition involves the transient denaturation of the dsDNA to form regions of ssDNA. Elsewhere we demonstrate that the dsDNA-dependent ATPase activity is proportional to the rate of recA protein-catalyzed branch migration. We suggest that this activity is responsible for a polar polymerization that drives the branch migration reaction. |
doi_str_mv | 10.1073/pnas.84.10.3127 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_14762321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>29345</jstor_id><sourcerecordid>29345</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-46610b2f766ac4253684049e7166b3b5fb103cbee57edf2f969122e177fc99163</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxSMEKtvCGQkJ5AOCU7b-ip0cOCzdApUKVFU5W4530rjKxsF2qu1_X4ddRXCBkzV6v3memZdlrwheEizZ6dDrsCx5KpaMUPkkWxBckVzwCj_NFhhTmZec8ufZcQh3GOOqKPFRdsQwY4IVi2x35d0APloIyDUotoDW49DBDq2_r_I1DNBvoI9odXOlA6CVifbexoeJPQ-mBW9NazUyrrPoGswKJb8Itke636CLGNC16wCl-pPXvWnRN3vrdbSuf5E9a3QX4OXhPcl-fj6_OfuaX_74cnG2usxNUcqYcyEIrmkjhdCG04KJkmNegSRC1KwumppgZmqAQsKmoU0lKkIpECkbU1VEsJPs4953GOstbExaxutODd5utX9QTlv1t9LbVt26e8UwLylJ_e8P_d79GiFEtbXBQNfpHtwYlJS8Kmka7H8g4VJQ9tvxdA8a70Lw0MzDEKymUNUUqir5VE-hpo43f-4w84cUk_7uoOtgdNdMp7ZhxkqGsaBlwj4csMl_Vud_VDN2XYRdTOTbf5IJeL0H7kJ0fiZoxXjBHgFhwcsr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14762321</pqid></control><display><type>article</type><title>Properties of the Duplex DNA-Dependent ATPase Activity of Escherichia coli RecA Protein and Its Role in Branch Migration</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Kowalczykowski, Stephen C. ; Clow, Jennifer ; Krupp, Renee A.</creator><creatorcontrib>Kowalczykowski, Stephen C. ; Clow, Jennifer ; Krupp, Renee A.</creatorcontrib><description>We have investigated the double-stranded DNA (dsDNA)-dependent ATPase activity of recA protein. This activity is distinguished from the single-stranded DNA (ssDNA)-dependent ATPase activity by the presence of a pronounced lag time before the onset of steady-state ATP hydrolysis. During the lag phase there is little ATP hydrolysis. The duration of the lag phase, referred to as the lag time, is found to increase with the thermal stability of the dsDNA substrate. Increasing either the MgCl2or NaCl concentration increases the lag time, whereas increasing the temperature decreases the lag time. The lag time shows little dependence on recA protein concentration but is strongly dependent on ATP concentration. After the lag phase, a steady-state ATP hydrolysis rate is achieved that approaches the rate observed with ssDNA. The steady-state phase of the reaction is proportional to the concentration of recA protein-DNA complex and shows saturation behavior at ≈ 5 ± 1 base pairs per recA protein monomer. These results suggest that the lag phase represents a rate-limiting step in the dsDNA-dependent ATP hydrolysis reaction that requires a structural transition in the dsDNA and that involves a ternary complex of ATP, recA protein, and DNA. We propose that this transition involves the transient denaturation of the dsDNA to form regions of ssDNA. Elsewhere we demonstrate that the dsDNA-dependent ATPase activity is proportional to the rate of recA protein-catalyzed branch migration. We suggest that this activity is responsible for a polar polymerization that drives the branch migration reaction.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.84.10.3127</identifier><identifier>PMID: 3033635</identifier><identifier>CODEN: PNASA6</identifier><language>eng</language><publisher>Washington, DC: National Academy of Sciences of the United States of America</publisher><subject>Adenosine triphosphatases ; Adenosine Triphosphatases - metabolism ; Biochemistry ; Biological and medical sciences ; DNA ; DNA Helicases - metabolism ; Equilibrium flow ; Escherichia coli ; Escherichia coli - metabolism ; Fundamental and applied biological sciences. Psychology ; Genic rearrangement. Recombination. Transposable element ; Hydrolysis ; Kinetics ; Melting ; Molecular and cellular biology ; Molecular genetics ; Molecules ; Monomers ; Rec A Recombinases - metabolism ; Substrate Specificity ; Time dependence</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1987-05, Vol.84 (10), p.3127-3131</ispartof><rights>1987 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c587t-46610b2f766ac4253684049e7166b3b5fb103cbee57edf2f969122e177fc99163</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/84/10.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/29345$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/29345$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=8300628$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/3033635$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kowalczykowski, Stephen C.</creatorcontrib><creatorcontrib>Clow, Jennifer</creatorcontrib><creatorcontrib>Krupp, Renee A.</creatorcontrib><title>Properties of the Duplex DNA-Dependent ATPase Activity of Escherichia coli RecA Protein and Its Role in Branch Migration</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We have investigated the double-stranded DNA (dsDNA)-dependent ATPase activity of recA protein. This activity is distinguished from the single-stranded DNA (ssDNA)-dependent ATPase activity by the presence of a pronounced lag time before the onset of steady-state ATP hydrolysis. During the lag phase there is little ATP hydrolysis. The duration of the lag phase, referred to as the lag time, is found to increase with the thermal stability of the dsDNA substrate. Increasing either the MgCl2or NaCl concentration increases the lag time, whereas increasing the temperature decreases the lag time. The lag time shows little dependence on recA protein concentration but is strongly dependent on ATP concentration. After the lag phase, a steady-state ATP hydrolysis rate is achieved that approaches the rate observed with ssDNA. The steady-state phase of the reaction is proportional to the concentration of recA protein-DNA complex and shows saturation behavior at ≈ 5 ± 1 base pairs per recA protein monomer. These results suggest that the lag phase represents a rate-limiting step in the dsDNA-dependent ATP hydrolysis reaction that requires a structural transition in the dsDNA and that involves a ternary complex of ATP, recA protein, and DNA. We propose that this transition involves the transient denaturation of the dsDNA to form regions of ssDNA. Elsewhere we demonstrate that the dsDNA-dependent ATPase activity is proportional to the rate of recA protein-catalyzed branch migration. We suggest that this activity is responsible for a polar polymerization that drives the branch migration reaction.</description><subject>Adenosine triphosphatases</subject><subject>Adenosine Triphosphatases - metabolism</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>DNA</subject><subject>DNA Helicases - metabolism</subject><subject>Equilibrium flow</subject><subject>Escherichia coli</subject><subject>Escherichia coli - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genic rearrangement. Recombination. Transposable element</subject><subject>Hydrolysis</subject><subject>Kinetics</subject><subject>Melting</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Molecules</subject><subject>Monomers</subject><subject>Rec A Recombinases - metabolism</subject><subject>Substrate Specificity</subject><subject>Time dependence</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1987</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxSMEKtvCGQkJ5AOCU7b-ip0cOCzdApUKVFU5W4530rjKxsF2qu1_X4ddRXCBkzV6v3memZdlrwheEizZ6dDrsCx5KpaMUPkkWxBckVzwCj_NFhhTmZec8ufZcQh3GOOqKPFRdsQwY4IVi2x35d0APloIyDUotoDW49DBDq2_r_I1DNBvoI9odXOlA6CVifbexoeJPQ-mBW9NazUyrrPoGswKJb8Itke636CLGNC16wCl-pPXvWnRN3vrdbSuf5E9a3QX4OXhPcl-fj6_OfuaX_74cnG2usxNUcqYcyEIrmkjhdCG04KJkmNegSRC1KwumppgZmqAQsKmoU0lKkIpECkbU1VEsJPs4953GOstbExaxutODd5utX9QTlv1t9LbVt26e8UwLylJ_e8P_d79GiFEtbXBQNfpHtwYlJS8Kmka7H8g4VJQ9tvxdA8a70Lw0MzDEKymUNUUqir5VE-hpo43f-4w84cUk_7uoOtgdNdMp7ZhxkqGsaBlwj4csMl_Vud_VDN2XYRdTOTbf5IJeL0H7kJ0fiZoxXjBHgFhwcsr</recordid><startdate>19870501</startdate><enddate>19870501</enddate><creator>Kowalczykowski, Stephen C.</creator><creator>Clow, Jennifer</creator><creator>Krupp, Renee A.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>C1K</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19870501</creationdate><title>Properties of the Duplex DNA-Dependent ATPase Activity of Escherichia coli RecA Protein and Its Role in Branch Migration</title><author>Kowalczykowski, Stephen C. ; Clow, Jennifer ; Krupp, Renee A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-46610b2f766ac4253684049e7166b3b5fb103cbee57edf2f969122e177fc99163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1987</creationdate><topic>Adenosine triphosphatases</topic><topic>Adenosine Triphosphatases - metabolism</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>DNA</topic><topic>DNA Helicases - metabolism</topic><topic>Equilibrium flow</topic><topic>Escherichia coli</topic><topic>Escherichia coli - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genic rearrangement. Recombination. Transposable element</topic><topic>Hydrolysis</topic><topic>Kinetics</topic><topic>Melting</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Molecules</topic><topic>Monomers</topic><topic>Rec A Recombinases - metabolism</topic><topic>Substrate Specificity</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kowalczykowski, Stephen C.</creatorcontrib><creatorcontrib>Clow, Jennifer</creatorcontrib><creatorcontrib>Krupp, Renee A.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kowalczykowski, Stephen C.</au><au>Clow, Jennifer</au><au>Krupp, Renee A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Properties of the Duplex DNA-Dependent ATPase Activity of Escherichia coli RecA Protein and Its Role in Branch Migration</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1987-05-01</date><risdate>1987</risdate><volume>84</volume><issue>10</issue><spage>3127</spage><epage>3131</epage><pages>3127-3131</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><coden>PNASA6</coden><abstract>We have investigated the double-stranded DNA (dsDNA)-dependent ATPase activity of recA protein. This activity is distinguished from the single-stranded DNA (ssDNA)-dependent ATPase activity by the presence of a pronounced lag time before the onset of steady-state ATP hydrolysis. During the lag phase there is little ATP hydrolysis. The duration of the lag phase, referred to as the lag time, is found to increase with the thermal stability of the dsDNA substrate. Increasing either the MgCl2or NaCl concentration increases the lag time, whereas increasing the temperature decreases the lag time. The lag time shows little dependence on recA protein concentration but is strongly dependent on ATP concentration. After the lag phase, a steady-state ATP hydrolysis rate is achieved that approaches the rate observed with ssDNA. The steady-state phase of the reaction is proportional to the concentration of recA protein-DNA complex and shows saturation behavior at ≈ 5 ± 1 base pairs per recA protein monomer. These results suggest that the lag phase represents a rate-limiting step in the dsDNA-dependent ATP hydrolysis reaction that requires a structural transition in the dsDNA and that involves a ternary complex of ATP, recA protein, and DNA. We propose that this transition involves the transient denaturation of the dsDNA to form regions of ssDNA. Elsewhere we demonstrate that the dsDNA-dependent ATPase activity is proportional to the rate of recA protein-catalyzed branch migration. We suggest that this activity is responsible for a polar polymerization that drives the branch migration reaction.</abstract><cop>Washington, DC</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>3033635</pmid><doi>10.1073/pnas.84.10.3127</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 1987-05, Vol.84 (10), p.3127-3131 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_14762321 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Adenosine triphosphatases Adenosine Triphosphatases - metabolism Biochemistry Biological and medical sciences DNA DNA Helicases - metabolism Equilibrium flow Escherichia coli Escherichia coli - metabolism Fundamental and applied biological sciences. Psychology Genic rearrangement. Recombination. Transposable element Hydrolysis Kinetics Melting Molecular and cellular biology Molecular genetics Molecules Monomers Rec A Recombinases - metabolism Substrate Specificity Time dependence |
title | Properties of the Duplex DNA-Dependent ATPase Activity of Escherichia coli RecA Protein and Its Role in Branch Migration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A56%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Properties%20of%20the%20Duplex%20DNA-Dependent%20ATPase%20Activity%20of%20Escherichia%20coli%20RecA%20Protein%20and%20Its%20Role%20in%20Branch%20Migration&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kowalczykowski,%20Stephen%20C.&rft.date=1987-05-01&rft.volume=84&rft.issue=10&rft.spage=3127&rft.epage=3131&rft.pages=3127-3131&rft.issn=0027-8424&rft.eissn=1091-6490&rft.coden=PNASA6&rft_id=info:doi/10.1073/pnas.84.10.3127&rft_dat=%3Cjstor_proqu%3E29345%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14762321&rft_id=info:pmid/3033635&rft_jstor_id=29345&rfr_iscdi=true |