Semiconductor/Polymer Nanocomposites of Acrylates and Nanocrystalline Silicon by Laser-Induced Thermal Polymerization

In this work, a novel method for the preparation of polymer/semiconductor nanocomposites is presented. The nanocomposite is directly prepared from a suspension of nanocrystalline silicon (nc‐Si) in bulk vinyl monomers (acrylates) and focused heating of the nc‐Si by irradiation with a pulsed laser at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular materials and engineering 2013-11, Vol.298 (11), p.1160-1165
Hauptverfasser: Deubel, Frank, Steenackers, Marin, Garrido, José A., Stutzmann, Martin, Jordan, Rainer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1165
container_issue 11
container_start_page 1160
container_title Macromolecular materials and engineering
container_volume 298
creator Deubel, Frank
Steenackers, Marin
Garrido, José A.
Stutzmann, Martin
Jordan, Rainer
description In this work, a novel method for the preparation of polymer/semiconductor nanocomposites is presented. The nanocomposite is directly prepared from a suspension of nanocrystalline silicon (nc‐Si) in bulk vinyl monomers (acrylates) and focused heating of the nc‐Si by irradiation with a pulsed laser at 532 nm wavelength. The silicon nanocrystals are the inorganic component of the composite and simultaneously act as initiation points of the free radical polymerization forming the hybrid composite. By this method, patterned nanocomposite films with thicknesses up to ≈250 µm can be readily prepared. Furthermore, the polymerization kinetics were investigated for different reaction conditions such as irradiation time, laser intensity, nc‐Si content, and addition of radical initiators. A new organic–inorganic nanocomposite is synthesized by laser‐induced thermal polymerization of acrylates. Silicon nanocrystals act as the inorganic component as well as hot‐spots initiating the thermal crosslinking reaction. The nanocomposite formation is confined to the irradiated areas and patterned composite film can be readily produced with a film thickness of up to 600 µm.
doi_str_mv 10.1002/mame.201200392
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1475559928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3118560651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4552-c08cda3fd137db2aeba0c05a5fcc60ce385976bdbb92dfb829c437588d7990cb3</originalsourceid><addsrcrecordid>eNqFkc-L1DAYhosouK5ePRdE8NLZ_Gya4zDsroszozAjHsPXJMWsaTMmLVr_els7DOLFUxLyvM8X8mbZa4xWGCFy00JrVwRhghCV5El2hRmVBUGcPf2zrwrBJHmevUjpESEsKkmvsuFgW6dDZwbdh3jzKfixtTHfQxd0aE8hud6mPDT5WsfRw3yAziz3cUw9eO86mx-cny15PeZbSDYWD7PRmvz41cYWfH4Wu1_Qu9C9zJ414JN9dV6vs893t8fN-2L78f5hs94WmnFOCo0qbYA2BlNhagK2BqQRB95oXSJtacWlKGtT15KYpq6I1IwKXlVGSIl0Ta-zd4v3FMP3waZetS5p6z10NgxJYSY451KSakLf_IM-hiF20-smilVCclqSiVotlI4hpWgbdYquhTgqjNTcgppbUJcWpsDbsxaSBt9E6LRLlxQREmHMyomTC_fDeTv-x6p2693t3zOKJetSb39eshC_qVJM_6G-7O8VPrIPx8Nmr3b0N_oMqng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448795362</pqid></control><display><type>article</type><title>Semiconductor/Polymer Nanocomposites of Acrylates and Nanocrystalline Silicon by Laser-Induced Thermal Polymerization</title><source>Access via Wiley Online Library</source><creator>Deubel, Frank ; Steenackers, Marin ; Garrido, José A. ; Stutzmann, Martin ; Jordan, Rainer</creator><creatorcontrib>Deubel, Frank ; Steenackers, Marin ; Garrido, José A. ; Stutzmann, Martin ; Jordan, Rainer</creatorcontrib><description>In this work, a novel method for the preparation of polymer/semiconductor nanocomposites is presented. The nanocomposite is directly prepared from a suspension of nanocrystalline silicon (nc‐Si) in bulk vinyl monomers (acrylates) and focused heating of the nc‐Si by irradiation with a pulsed laser at 532 nm wavelength. The silicon nanocrystals are the inorganic component of the composite and simultaneously act as initiation points of the free radical polymerization forming the hybrid composite. By this method, patterned nanocomposite films with thicknesses up to ≈250 µm can be readily prepared. Furthermore, the polymerization kinetics were investigated for different reaction conditions such as irradiation time, laser intensity, nc‐Si content, and addition of radical initiators. A new organic–inorganic nanocomposite is synthesized by laser‐induced thermal polymerization of acrylates. Silicon nanocrystals act as the inorganic component as well as hot‐spots initiating the thermal crosslinking reaction. The nanocomposite formation is confined to the irradiated areas and patterned composite film can be readily produced with a film thickness of up to 600 µm.</description><identifier>ISSN: 1438-7492</identifier><identifier>EISSN: 1439-2054</identifier><identifier>DOI: 10.1002/mame.201200392</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Acrylates ; Applied sciences ; Exact sciences and technology ; nanocomposites ; nanoparticles ; patterning ; photopolymerization ; Physicochemistry of polymers ; Polymerization ; Polymers and radiations ; silicon nanocrystals</subject><ispartof>Macromolecular materials and engineering, 2013-11, Vol.298 (11), p.1160-1165</ispartof><rights>Copyright © 2013 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2014 INIST-CNRS</rights><rights>Copyright © 2013 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4552-c08cda3fd137db2aeba0c05a5fcc60ce385976bdbb92dfb829c437588d7990cb3</citedby><cites>FETCH-LOGICAL-c4552-c08cda3fd137db2aeba0c05a5fcc60ce385976bdbb92dfb829c437588d7990cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmame.201200392$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmame.201200392$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27901146$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Deubel, Frank</creatorcontrib><creatorcontrib>Steenackers, Marin</creatorcontrib><creatorcontrib>Garrido, José A.</creatorcontrib><creatorcontrib>Stutzmann, Martin</creatorcontrib><creatorcontrib>Jordan, Rainer</creatorcontrib><title>Semiconductor/Polymer Nanocomposites of Acrylates and Nanocrystalline Silicon by Laser-Induced Thermal Polymerization</title><title>Macromolecular materials and engineering</title><addtitle>Macromol. Mater. Eng</addtitle><description>In this work, a novel method for the preparation of polymer/semiconductor nanocomposites is presented. The nanocomposite is directly prepared from a suspension of nanocrystalline silicon (nc‐Si) in bulk vinyl monomers (acrylates) and focused heating of the nc‐Si by irradiation with a pulsed laser at 532 nm wavelength. The silicon nanocrystals are the inorganic component of the composite and simultaneously act as initiation points of the free radical polymerization forming the hybrid composite. By this method, patterned nanocomposite films with thicknesses up to ≈250 µm can be readily prepared. Furthermore, the polymerization kinetics were investigated for different reaction conditions such as irradiation time, laser intensity, nc‐Si content, and addition of radical initiators. A new organic–inorganic nanocomposite is synthesized by laser‐induced thermal polymerization of acrylates. Silicon nanocrystals act as the inorganic component as well as hot‐spots initiating the thermal crosslinking reaction. The nanocomposite formation is confined to the irradiated areas and patterned composite film can be readily produced with a film thickness of up to 600 µm.</description><subject>Acrylates</subject><subject>Applied sciences</subject><subject>Exact sciences and technology</subject><subject>nanocomposites</subject><subject>nanoparticles</subject><subject>patterning</subject><subject>photopolymerization</subject><subject>Physicochemistry of polymers</subject><subject>Polymerization</subject><subject>Polymers and radiations</subject><subject>silicon nanocrystals</subject><issn>1438-7492</issn><issn>1439-2054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkc-L1DAYhosouK5ePRdE8NLZ_Gya4zDsroszozAjHsPXJMWsaTMmLVr_els7DOLFUxLyvM8X8mbZa4xWGCFy00JrVwRhghCV5El2hRmVBUGcPf2zrwrBJHmevUjpESEsKkmvsuFgW6dDZwbdh3jzKfixtTHfQxd0aE8hud6mPDT5WsfRw3yAziz3cUw9eO86mx-cny15PeZbSDYWD7PRmvz41cYWfH4Wu1_Qu9C9zJ414JN9dV6vs893t8fN-2L78f5hs94WmnFOCo0qbYA2BlNhagK2BqQRB95oXSJtacWlKGtT15KYpq6I1IwKXlVGSIl0Ta-zd4v3FMP3waZetS5p6z10NgxJYSY451KSakLf_IM-hiF20-smilVCclqSiVotlI4hpWgbdYquhTgqjNTcgppbUJcWpsDbsxaSBt9E6LRLlxQREmHMyomTC_fDeTv-x6p2693t3zOKJetSb39eshC_qVJM_6G-7O8VPrIPx8Nmr3b0N_oMqng</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Deubel, Frank</creator><creator>Steenackers, Marin</creator><creator>Garrido, José A.</creator><creator>Stutzmann, Martin</creator><creator>Jordan, Rainer</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7SP</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>201311</creationdate><title>Semiconductor/Polymer Nanocomposites of Acrylates and Nanocrystalline Silicon by Laser-Induced Thermal Polymerization</title><author>Deubel, Frank ; Steenackers, Marin ; Garrido, José A. ; Stutzmann, Martin ; Jordan, Rainer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4552-c08cda3fd137db2aeba0c05a5fcc60ce385976bdbb92dfb829c437588d7990cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acrylates</topic><topic>Applied sciences</topic><topic>Exact sciences and technology</topic><topic>nanocomposites</topic><topic>nanoparticles</topic><topic>patterning</topic><topic>photopolymerization</topic><topic>Physicochemistry of polymers</topic><topic>Polymerization</topic><topic>Polymers and radiations</topic><topic>silicon nanocrystals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deubel, Frank</creatorcontrib><creatorcontrib>Steenackers, Marin</creatorcontrib><creatorcontrib>Garrido, José A.</creatorcontrib><creatorcontrib>Stutzmann, Martin</creatorcontrib><creatorcontrib>Jordan, Rainer</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Macromolecular materials and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deubel, Frank</au><au>Steenackers, Marin</au><au>Garrido, José A.</au><au>Stutzmann, Martin</au><au>Jordan, Rainer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semiconductor/Polymer Nanocomposites of Acrylates and Nanocrystalline Silicon by Laser-Induced Thermal Polymerization</atitle><jtitle>Macromolecular materials and engineering</jtitle><addtitle>Macromol. Mater. Eng</addtitle><date>2013-11</date><risdate>2013</risdate><volume>298</volume><issue>11</issue><spage>1160</spage><epage>1165</epage><pages>1160-1165</pages><issn>1438-7492</issn><eissn>1439-2054</eissn><abstract>In this work, a novel method for the preparation of polymer/semiconductor nanocomposites is presented. The nanocomposite is directly prepared from a suspension of nanocrystalline silicon (nc‐Si) in bulk vinyl monomers (acrylates) and focused heating of the nc‐Si by irradiation with a pulsed laser at 532 nm wavelength. The silicon nanocrystals are the inorganic component of the composite and simultaneously act as initiation points of the free radical polymerization forming the hybrid composite. By this method, patterned nanocomposite films with thicknesses up to ≈250 µm can be readily prepared. Furthermore, the polymerization kinetics were investigated for different reaction conditions such as irradiation time, laser intensity, nc‐Si content, and addition of radical initiators. A new organic–inorganic nanocomposite is synthesized by laser‐induced thermal polymerization of acrylates. Silicon nanocrystals act as the inorganic component as well as hot‐spots initiating the thermal crosslinking reaction. The nanocomposite formation is confined to the irradiated areas and patterned composite film can be readily produced with a film thickness of up to 600 µm.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/mame.201200392</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1438-7492
ispartof Macromolecular materials and engineering, 2013-11, Vol.298 (11), p.1160-1165
issn 1438-7492
1439-2054
language eng
recordid cdi_proquest_miscellaneous_1475559928
source Access via Wiley Online Library
subjects Acrylates
Applied sciences
Exact sciences and technology
nanocomposites
nanoparticles
patterning
photopolymerization
Physicochemistry of polymers
Polymerization
Polymers and radiations
silicon nanocrystals
title Semiconductor/Polymer Nanocomposites of Acrylates and Nanocrystalline Silicon by Laser-Induced Thermal Polymerization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A05%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semiconductor/Polymer%20Nanocomposites%20of%20Acrylates%20and%20Nanocrystalline%20Silicon%20by%20Laser-Induced%20Thermal%20Polymerization&rft.jtitle=Macromolecular%20materials%20and%20engineering&rft.au=Deubel,%20Frank&rft.date=2013-11&rft.volume=298&rft.issue=11&rft.spage=1160&rft.epage=1165&rft.pages=1160-1165&rft.issn=1438-7492&rft.eissn=1439-2054&rft_id=info:doi/10.1002/mame.201200392&rft_dat=%3Cproquest_cross%3E3118560651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1448795362&rft_id=info:pmid/&rfr_iscdi=true