LIE METABELIAN SKEW ELEMENTS IN GROUP RINGS
Let F be a field of characteristic p ≠ 2 and G a group without 2-elements having an involution ∗. Extend the involution linearly to the group ring FG, and let (FG)− denote the set of skew elements with respect to ∗. In this paper, we show that if G is finite and (FG)− is Lie metabelian, then G is ni...
Gespeichert in:
Veröffentlicht in: | Glasgow mathematical journal 2014-01, Vol.56 (1), p.187-195 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let F be a field of characteristic p ≠ 2 and G a group without 2-elements having an involution ∗. Extend the involution linearly to the group ring FG, and let (FG)− denote the set of skew elements with respect to ∗. In this paper, we show that if G is finite and (FG)− is Lie metabelian, then G is nilpotent. Based on this result, we deduce that if G is torsion, p > 7 and (FG)− is Lie metabelian, then G must be abelian. Exceptions are constructed for smaller values of p. |
---|---|
ISSN: | 0017-0895 1469-509X |
DOI: | 10.1017/S0017089513000165 |