Boundary control problem for the one-dimensional Klein-Gordon-Fock equation with a variable coefficient: The case of control by displacements at two endpoints

We consider the problem of boundary control by displacements at two points x = 0 and x = l of a process described by the Klein-Gordon-Fock equation with a variable coefficient on the finite interval 0 ≤ x ≤ l . For the critical time interval T = l , we obtain a necessary and sufficient condition for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2013-08, Vol.49 (8), p.1006-1017
Hauptverfasser: Abdukarimov, M. F., Kritskov, L. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1017
container_issue 8
container_start_page 1006
container_title Differential equations
container_volume 49
creator Abdukarimov, M. F.
Kritskov, L. V.
description We consider the problem of boundary control by displacements at two points x = 0 and x = l of a process described by the Klein-Gordon-Fock equation with a variable coefficient on the finite interval 0 ≤ x ≤ l . For the critical time interval T = l , we obtain a necessary and sufficient condition for the existence of unique boundary functions u (0, t ) = µ( t ) and u ( l, t ) = ν ( t ) bringing the system from an arbitrary initial state at t = 0 into an arbitrary terminal state at t = T .
doi_str_mv 10.1134/S0012266113080090
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1475540687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1475540687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-95741dac7d5a3e5fb89c22b6351cc58bf2dadb7dd2be0c8f51e41eb0ab45b4a73</originalsourceid><addsrcrecordid>eNp1kclKBTEQRYMo-Bw-wF3AjZvWpDvpwZ2KEwou1HWToaLRfskzSSv-jN9qmiciiqtQuefeoqoQ2qFkn9KKHdwSQsuyrnNBWkI6soJmtCZtkctqFc0muZj0dbQR4xPJSEP5DH0c-9FpEd6x8i4FP-BF8HKAOTY-4PQI2DsotJ2Di9Y7MeCrAawrzn3Q3hVnXj1jeBlFyiJ-s-kRC_wqghU5I0eCMVZZcOkQ3-UsJWIONN-95DvWNi4GoSA3SBGLhNObx-D0wtv8sYXWjBgibH-9m-j-7PTu5KK4vjm_PDm6LlTFulR0vGFUC9VoLirgRradKktZV5wqxVtpSi20bLQuJRDVGk6BUZBESMYlE021ifaWuXn6lxFi6uc2KhgG4cCPsaes4ZyRup3Q3V_okx9D3sxEsbbjddt1maJLSgUfYwDTL4Kd5z33lPTTxfo_F8uecumJmXUPEH4k_2v6BIAcmww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448956899</pqid></control><display><type>article</type><title>Boundary control problem for the one-dimensional Klein-Gordon-Fock equation with a variable coefficient: The case of control by displacements at two endpoints</title><source>SpringerLink Journals - AutoHoldings</source><creator>Abdukarimov, M. F. ; Kritskov, L. V.</creator><creatorcontrib>Abdukarimov, M. F. ; Kritskov, L. V.</creatorcontrib><description>We consider the problem of boundary control by displacements at two points x = 0 and x = l of a process described by the Klein-Gordon-Fock equation with a variable coefficient on the finite interval 0 ≤ x ≤ l . For the critical time interval T = l , we obtain a necessary and sufficient condition for the existence of unique boundary functions u (0, t ) = µ( t ) and u ( l, t ) = ν ( t ) bringing the system from an arbitrary initial state at t = 0 into an arbitrary terminal state at t = T .</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S0012266113080090</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Boundaries ; Boundary value problems ; Control Theory ; Difference and Functional Equations ; Differential equations ; Interval arithmetic ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations ; Studies</subject><ispartof>Differential equations, 2013-08, Vol.49 (8), p.1006-1017</ispartof><rights>Pleiades Publishing, Ltd. 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-95741dac7d5a3e5fb89c22b6351cc58bf2dadb7dd2be0c8f51e41eb0ab45b4a73</citedby><cites>FETCH-LOGICAL-c349t-95741dac7d5a3e5fb89c22b6351cc58bf2dadb7dd2be0c8f51e41eb0ab45b4a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0012266113080090$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0012266113080090$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Abdukarimov, M. F.</creatorcontrib><creatorcontrib>Kritskov, L. V.</creatorcontrib><title>Boundary control problem for the one-dimensional Klein-Gordon-Fock equation with a variable coefficient: The case of control by displacements at two endpoints</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>We consider the problem of boundary control by displacements at two points x = 0 and x = l of a process described by the Klein-Gordon-Fock equation with a variable coefficient on the finite interval 0 ≤ x ≤ l . For the critical time interval T = l , we obtain a necessary and sufficient condition for the existence of unique boundary functions u (0, t ) = µ( t ) and u ( l, t ) = ν ( t ) bringing the system from an arbitrary initial state at t = 0 into an arbitrary terminal state at t = T .</description><subject>Boundaries</subject><subject>Boundary value problems</subject><subject>Control Theory</subject><subject>Difference and Functional Equations</subject><subject>Differential equations</subject><subject>Interval arithmetic</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Studies</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kclKBTEQRYMo-Bw-wF3AjZvWpDvpwZ2KEwou1HWToaLRfskzSSv-jN9qmiciiqtQuefeoqoQ2qFkn9KKHdwSQsuyrnNBWkI6soJmtCZtkctqFc0muZj0dbQR4xPJSEP5DH0c-9FpEd6x8i4FP-BF8HKAOTY-4PQI2DsotJ2Di9Y7MeCrAawrzn3Q3hVnXj1jeBlFyiJ-s-kRC_wqghU5I0eCMVZZcOkQ3-UsJWIONN-95DvWNi4GoSA3SBGLhNObx-D0wtv8sYXWjBgibH-9m-j-7PTu5KK4vjm_PDm6LlTFulR0vGFUC9VoLirgRradKktZV5wqxVtpSi20bLQuJRDVGk6BUZBESMYlE021ifaWuXn6lxFi6uc2KhgG4cCPsaes4ZyRup3Q3V_okx9D3sxEsbbjddt1maJLSgUfYwDTL4Kd5z33lPTTxfo_F8uecumJmXUPEH4k_2v6BIAcmww</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Abdukarimov, M. F.</creator><creator>Kritskov, L. V.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>04Q</scope><scope>04W</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20130801</creationdate><title>Boundary control problem for the one-dimensional Klein-Gordon-Fock equation with a variable coefficient: The case of control by displacements at two endpoints</title><author>Abdukarimov, M. F. ; Kritskov, L. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-95741dac7d5a3e5fb89c22b6351cc58bf2dadb7dd2be0c8f51e41eb0ab45b4a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Boundaries</topic><topic>Boundary value problems</topic><topic>Control Theory</topic><topic>Difference and Functional Equations</topic><topic>Differential equations</topic><topic>Interval arithmetic</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdukarimov, M. F.</creatorcontrib><creatorcontrib>Kritskov, L. V.</creatorcontrib><collection>CrossRef</collection><collection>India Database</collection><collection>India Database: Science &amp; Technology</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdukarimov, M. F.</au><au>Kritskov, L. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary control problem for the one-dimensional Klein-Gordon-Fock equation with a variable coefficient: The case of control by displacements at two endpoints</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2013-08-01</date><risdate>2013</risdate><volume>49</volume><issue>8</issue><spage>1006</spage><epage>1017</epage><pages>1006-1017</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>We consider the problem of boundary control by displacements at two points x = 0 and x = l of a process described by the Klein-Gordon-Fock equation with a variable coefficient on the finite interval 0 ≤ x ≤ l . For the critical time interval T = l , we obtain a necessary and sufficient condition for the existence of unique boundary functions u (0, t ) = µ( t ) and u ( l, t ) = ν ( t ) bringing the system from an arbitrary initial state at t = 0 into an arbitrary terminal state at t = T .</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1134/S0012266113080090</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-2661
ispartof Differential equations, 2013-08, Vol.49 (8), p.1006-1017
issn 0012-2661
1608-3083
language eng
recordid cdi_proquest_miscellaneous_1475540687
source SpringerLink Journals - AutoHoldings
subjects Boundaries
Boundary value problems
Control Theory
Difference and Functional Equations
Differential equations
Interval arithmetic
Mathematical analysis
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
Partial Differential Equations
Studies
title Boundary control problem for the one-dimensional Klein-Gordon-Fock equation with a variable coefficient: The case of control by displacements at two endpoints
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A40%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20control%20problem%20for%20the%20one-dimensional%20Klein-Gordon-Fock%20equation%20with%20a%20variable%20coefficient:%20The%20case%20of%20control%20by%20displacements%20at%20two%20endpoints&rft.jtitle=Differential%20equations&rft.au=Abdukarimov,%20M.%20F.&rft.date=2013-08-01&rft.volume=49&rft.issue=8&rft.spage=1006&rft.epage=1017&rft.pages=1006-1017&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S0012266113080090&rft_dat=%3Cproquest_cross%3E1475540687%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1448956899&rft_id=info:pmid/&rfr_iscdi=true