Boundary control problem for the one-dimensional Klein-Gordon-Fock equation with a variable coefficient: The case of control by displacements at two endpoints
We consider the problem of boundary control by displacements at two points x = 0 and x = l of a process described by the Klein-Gordon-Fock equation with a variable coefficient on the finite interval 0 ≤ x ≤ l . For the critical time interval T = l , we obtain a necessary and sufficient condition for...
Gespeichert in:
Veröffentlicht in: | Differential equations 2013-08, Vol.49 (8), p.1006-1017 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1017 |
---|---|
container_issue | 8 |
container_start_page | 1006 |
container_title | Differential equations |
container_volume | 49 |
creator | Abdukarimov, M. F. Kritskov, L. V. |
description | We consider the problem of boundary control by displacements at two points
x
= 0 and
x
=
l
of a process described by the Klein-Gordon-Fock equation with a variable coefficient on the finite interval 0 ≤
x
≤
l
. For the critical time interval
T
=
l
, we obtain a necessary and sufficient condition for the existence of unique boundary functions
u
(0,
t
) = µ(
t
) and
u
(
l, t
) =
ν
(
t
) bringing the system from an arbitrary initial state at
t
= 0 into an arbitrary terminal state at
t
=
T
. |
doi_str_mv | 10.1134/S0012266113080090 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1475540687</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1475540687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-95741dac7d5a3e5fb89c22b6351cc58bf2dadb7dd2be0c8f51e41eb0ab45b4a73</originalsourceid><addsrcrecordid>eNp1kclKBTEQRYMo-Bw-wF3AjZvWpDvpwZ2KEwou1HWToaLRfskzSSv-jN9qmiciiqtQuefeoqoQ2qFkn9KKHdwSQsuyrnNBWkI6soJmtCZtkctqFc0muZj0dbQR4xPJSEP5DH0c-9FpEd6x8i4FP-BF8HKAOTY-4PQI2DsotJ2Di9Y7MeCrAawrzn3Q3hVnXj1jeBlFyiJ-s-kRC_wqghU5I0eCMVZZcOkQ3-UsJWIONN-95DvWNi4GoSA3SBGLhNObx-D0wtv8sYXWjBgibH-9m-j-7PTu5KK4vjm_PDm6LlTFulR0vGFUC9VoLirgRradKktZV5wqxVtpSi20bLQuJRDVGk6BUZBESMYlE021ifaWuXn6lxFi6uc2KhgG4cCPsaes4ZyRup3Q3V_okx9D3sxEsbbjddt1maJLSgUfYwDTL4Kd5z33lPTTxfo_F8uecumJmXUPEH4k_2v6BIAcmww</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448956899</pqid></control><display><type>article</type><title>Boundary control problem for the one-dimensional Klein-Gordon-Fock equation with a variable coefficient: The case of control by displacements at two endpoints</title><source>SpringerLink Journals - AutoHoldings</source><creator>Abdukarimov, M. F. ; Kritskov, L. V.</creator><creatorcontrib>Abdukarimov, M. F. ; Kritskov, L. V.</creatorcontrib><description>We consider the problem of boundary control by displacements at two points
x
= 0 and
x
=
l
of a process described by the Klein-Gordon-Fock equation with a variable coefficient on the finite interval 0 ≤
x
≤
l
. For the critical time interval
T
=
l
, we obtain a necessary and sufficient condition for the existence of unique boundary functions
u
(0,
t
) = µ(
t
) and
u
(
l, t
) =
ν
(
t
) bringing the system from an arbitrary initial state at
t
= 0 into an arbitrary terminal state at
t
=
T
.</description><identifier>ISSN: 0012-2661</identifier><identifier>EISSN: 1608-3083</identifier><identifier>DOI: 10.1134/S0012266113080090</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Boundaries ; Boundary value problems ; Control Theory ; Difference and Functional Equations ; Differential equations ; Interval arithmetic ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations ; Studies</subject><ispartof>Differential equations, 2013-08, Vol.49 (8), p.1006-1017</ispartof><rights>Pleiades Publishing, Ltd. 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-95741dac7d5a3e5fb89c22b6351cc58bf2dadb7dd2be0c8f51e41eb0ab45b4a73</citedby><cites>FETCH-LOGICAL-c349t-95741dac7d5a3e5fb89c22b6351cc58bf2dadb7dd2be0c8f51e41eb0ab45b4a73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0012266113080090$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0012266113080090$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Abdukarimov, M. F.</creatorcontrib><creatorcontrib>Kritskov, L. V.</creatorcontrib><title>Boundary control problem for the one-dimensional Klein-Gordon-Fock equation with a variable coefficient: The case of control by displacements at two endpoints</title><title>Differential equations</title><addtitle>Diff Equat</addtitle><description>We consider the problem of boundary control by displacements at two points
x
= 0 and
x
=
l
of a process described by the Klein-Gordon-Fock equation with a variable coefficient on the finite interval 0 ≤
x
≤
l
. For the critical time interval
T
=
l
, we obtain a necessary and sufficient condition for the existence of unique boundary functions
u
(0,
t
) = µ(
t
) and
u
(
l, t
) =
ν
(
t
) bringing the system from an arbitrary initial state at
t
= 0 into an arbitrary terminal state at
t
=
T
.</description><subject>Boundaries</subject><subject>Boundary value problems</subject><subject>Control Theory</subject><subject>Difference and Functional Equations</subject><subject>Differential equations</subject><subject>Interval arithmetic</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Studies</subject><issn>0012-2661</issn><issn>1608-3083</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kclKBTEQRYMo-Bw-wF3AjZvWpDvpwZ2KEwou1HWToaLRfskzSSv-jN9qmiciiqtQuefeoqoQ2qFkn9KKHdwSQsuyrnNBWkI6soJmtCZtkctqFc0muZj0dbQR4xPJSEP5DH0c-9FpEd6x8i4FP-BF8HKAOTY-4PQI2DsotJ2Di9Y7MeCrAawrzn3Q3hVnXj1jeBlFyiJ-s-kRC_wqghU5I0eCMVZZcOkQ3-UsJWIONN-95DvWNi4GoSA3SBGLhNObx-D0wtv8sYXWjBgibH-9m-j-7PTu5KK4vjm_PDm6LlTFulR0vGFUC9VoLirgRradKktZV5wqxVtpSi20bLQuJRDVGk6BUZBESMYlE021ifaWuXn6lxFi6uc2KhgG4cCPsaes4ZyRup3Q3V_okx9D3sxEsbbjddt1maJLSgUfYwDTL4Kd5z33lPTTxfo_F8uecumJmXUPEH4k_2v6BIAcmww</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Abdukarimov, M. F.</creator><creator>Kritskov, L. V.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>04Q</scope><scope>04W</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20130801</creationdate><title>Boundary control problem for the one-dimensional Klein-Gordon-Fock equation with a variable coefficient: The case of control by displacements at two endpoints</title><author>Abdukarimov, M. F. ; Kritskov, L. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-95741dac7d5a3e5fb89c22b6351cc58bf2dadb7dd2be0c8f51e41eb0ab45b4a73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Boundaries</topic><topic>Boundary value problems</topic><topic>Control Theory</topic><topic>Difference and Functional Equations</topic><topic>Differential equations</topic><topic>Interval arithmetic</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdukarimov, M. F.</creatorcontrib><creatorcontrib>Kritskov, L. V.</creatorcontrib><collection>CrossRef</collection><collection>India Database</collection><collection>India Database: Science & Technology</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdukarimov, M. F.</au><au>Kritskov, L. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boundary control problem for the one-dimensional Klein-Gordon-Fock equation with a variable coefficient: The case of control by displacements at two endpoints</atitle><jtitle>Differential equations</jtitle><stitle>Diff Equat</stitle><date>2013-08-01</date><risdate>2013</risdate><volume>49</volume><issue>8</issue><spage>1006</spage><epage>1017</epage><pages>1006-1017</pages><issn>0012-2661</issn><eissn>1608-3083</eissn><abstract>We consider the problem of boundary control by displacements at two points
x
= 0 and
x
=
l
of a process described by the Klein-Gordon-Fock equation with a variable coefficient on the finite interval 0 ≤
x
≤
l
. For the critical time interval
T
=
l
, we obtain a necessary and sufficient condition for the existence of unique boundary functions
u
(0,
t
) = µ(
t
) and
u
(
l, t
) =
ν
(
t
) bringing the system from an arbitrary initial state at
t
= 0 into an arbitrary terminal state at
t
=
T
.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1134/S0012266113080090</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-2661 |
ispartof | Differential equations, 2013-08, Vol.49 (8), p.1006-1017 |
issn | 0012-2661 1608-3083 |
language | eng |
recordid | cdi_proquest_miscellaneous_1475540687 |
source | SpringerLink Journals - AutoHoldings |
subjects | Boundaries Boundary value problems Control Theory Difference and Functional Equations Differential equations Interval arithmetic Mathematical analysis Mathematics Mathematics and Statistics Ordinary Differential Equations Partial Differential Equations Studies |
title | Boundary control problem for the one-dimensional Klein-Gordon-Fock equation with a variable coefficient: The case of control by displacements at two endpoints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A40%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boundary%20control%20problem%20for%20the%20one-dimensional%20Klein-Gordon-Fock%20equation%20with%20a%20variable%20coefficient:%20The%20case%20of%20control%20by%20displacements%20at%20two%20endpoints&rft.jtitle=Differential%20equations&rft.au=Abdukarimov,%20M.%20F.&rft.date=2013-08-01&rft.volume=49&rft.issue=8&rft.spage=1006&rft.epage=1017&rft.pages=1006-1017&rft.issn=0012-2661&rft.eissn=1608-3083&rft_id=info:doi/10.1134/S0012266113080090&rft_dat=%3Cproquest_cross%3E1475540687%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1448956899&rft_id=info:pmid/&rfr_iscdi=true |