Three-dimensional nanostructures by focused ion beam techniques: Fabrication and characterization

Three-dimensional (3D) nanostructures and nanodevices have attracted tremendous interest in the past few years due to their special mechanical and physical properties. Nanodevices using 3D nanostructures as the building blocks have been demonstrated to exhibit multifunctionality and functions that c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2013-11, Vol.28 (22), p.3063-3078
Hauptverfasser: Li, Wuxia, Gu, Changzhi, Cui, Ajuan, Fenton, J.C., Jiang, Qianqing, Warburton, P.A., Shen, Tiehan H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3078
container_issue 22
container_start_page 3063
container_title Journal of materials research
container_volume 28
creator Li, Wuxia
Gu, Changzhi
Cui, Ajuan
Fenton, J.C.
Jiang, Qianqing
Warburton, P.A.
Shen, Tiehan H.
description Three-dimensional (3D) nanostructures and nanodevices have attracted tremendous interest in the past few years due to their special mechanical and physical properties. Nanodevices using 3D nanostructures as the building blocks have been demonstrated to exhibit multifunctionality and functions that conventional planar devices cannot achieve. In this article, we report and review focused ion beam techniques for direct site-specific growth of 3D nanostructures and postgrowth shape modification of freestanding nanostructures by ion beam-induced chemical vapor deposition and ion-beam-irradiation-induced plastic bending, respectively. Such techniques have shown nanometer-scale resolution and accuracy in the fabrication of metallic nanoelectrodes, 3D pickup coils, nanogaps, and multibranched structures. Characterization of the resulting nanostructures shows that focused ion beam techniques allow conducting and superconducting freestanding 3D structures to be tailored in size, geometry, and integrated with planar electronic, mechanical, and superconducting nanodevices, potentially enabling lab-on-a-chip experiments.
doi_str_mv 10.1557/jmr.2013.324
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1475538812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2013_324</cupid><sourcerecordid>1475538812</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-24259bb816004e52788e2b7313a566d7236f1b47dea27c59405a76b3fbdded9a3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFZv_oCAFw-m7mc28SZiVSh4qecwuztpU5qk7iYH_fVubA8igqeBmWdeZh5CLhmdMaX07abxM06ZmAkuj8iEUylTJXh2TCY0z2XKCyZPyVkIG0qZolpOCCzXHjF1dYNtqLsWtkkLbRd6P9h-8BgS85FUnR0CuiTOE4PQJD3adVu_DxjukjkYX1voxyG0LrFr8GB79PXnd_OcnFSwDXhxqFPyNn9cPjyni9enl4f7RWqFFn3KJVeFMTnLKJWouM5z5EYLJkBlmdNcZBUzUjsErq0qJFWgMyMq4xy6AsSUXO9zd74bL-vLpg4Wt1tosRtCyaRWSuQ54xG9-oVuusHH30cqRguqCxqpmz1lfReCx6rc-boB_1EyWo6-y-i7HH2X0XfE0z0eItau0P8I_ZufHeKhiQbdCv9Z-AIeCZIV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1459430790</pqid></control><display><type>article</type><title>Three-dimensional nanostructures by focused ion beam techniques: Fabrication and characterization</title><source>Cambridge Journals</source><source>Springer Nature - Complete Springer Journals</source><creator>Li, Wuxia ; Gu, Changzhi ; Cui, Ajuan ; Fenton, J.C. ; Jiang, Qianqing ; Warburton, P.A. ; Shen, Tiehan H.</creator><creatorcontrib>Li, Wuxia ; Gu, Changzhi ; Cui, Ajuan ; Fenton, J.C. ; Jiang, Qianqing ; Warburton, P.A. ; Shen, Tiehan H.</creatorcontrib><description>Three-dimensional (3D) nanostructures and nanodevices have attracted tremendous interest in the past few years due to their special mechanical and physical properties. Nanodevices using 3D nanostructures as the building blocks have been demonstrated to exhibit multifunctionality and functions that conventional planar devices cannot achieve. In this article, we report and review focused ion beam techniques for direct site-specific growth of 3D nanostructures and postgrowth shape modification of freestanding nanostructures by ion beam-induced chemical vapor deposition and ion-beam-irradiation-induced plastic bending, respectively. Such techniques have shown nanometer-scale resolution and accuracy in the fabrication of metallic nanoelectrodes, 3D pickup coils, nanogaps, and multibranched structures. Characterization of the resulting nanostructures shows that focused ion beam techniques allow conducting and superconducting freestanding 3D structures to be tailored in size, geometry, and integrated with planar electronic, mechanical, and superconducting nanodevices, potentially enabling lab-on-a-chip experiments.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2013.324</identifier><identifier>CODEN: JMREEE</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>3-D technology ; Adsorption ; Analysis ; Applied and Technical Physics ; Biomaterials ; By products ; Decomposition ; Electronics ; Electrons ; Inorganic Chemistry ; Invited Feature Papers ; Ion beams ; Materials Engineering ; Materials research ; Materials Science ; Nanomaterials ; Nanostructured materials ; Nanotechnology ; Nanowires ; Production methods ; Studies ; Superconductors</subject><ispartof>Journal of materials research, 2013-11, Vol.28 (22), p.3063-3078</ispartof><rights>Copyright © Materials Research Society 2013</rights><rights>The Materials Research Society 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-24259bb816004e52788e2b7313a566d7236f1b47dea27c59405a76b3fbdded9a3</citedby><cites>FETCH-LOGICAL-c373t-24259bb816004e52788e2b7313a566d7236f1b47dea27c59405a76b3fbdded9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/jmr.2013.324$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0884291413003245/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,777,781,27905,27906,41469,42538,51300,55609</link.rule.ids></links><search><creatorcontrib>Li, Wuxia</creatorcontrib><creatorcontrib>Gu, Changzhi</creatorcontrib><creatorcontrib>Cui, Ajuan</creatorcontrib><creatorcontrib>Fenton, J.C.</creatorcontrib><creatorcontrib>Jiang, Qianqing</creatorcontrib><creatorcontrib>Warburton, P.A.</creatorcontrib><creatorcontrib>Shen, Tiehan H.</creatorcontrib><title>Three-dimensional nanostructures by focused ion beam techniques: Fabrication and characterization</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>Three-dimensional (3D) nanostructures and nanodevices have attracted tremendous interest in the past few years due to their special mechanical and physical properties. Nanodevices using 3D nanostructures as the building blocks have been demonstrated to exhibit multifunctionality and functions that conventional planar devices cannot achieve. In this article, we report and review focused ion beam techniques for direct site-specific growth of 3D nanostructures and postgrowth shape modification of freestanding nanostructures by ion beam-induced chemical vapor deposition and ion-beam-irradiation-induced plastic bending, respectively. Such techniques have shown nanometer-scale resolution and accuracy in the fabrication of metallic nanoelectrodes, 3D pickup coils, nanogaps, and multibranched structures. Characterization of the resulting nanostructures shows that focused ion beam techniques allow conducting and superconducting freestanding 3D structures to be tailored in size, geometry, and integrated with planar electronic, mechanical, and superconducting nanodevices, potentially enabling lab-on-a-chip experiments.</description><subject>3-D technology</subject><subject>Adsorption</subject><subject>Analysis</subject><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>By products</subject><subject>Decomposition</subject><subject>Electronics</subject><subject>Electrons</subject><subject>Inorganic Chemistry</subject><subject>Invited Feature Papers</subject><subject>Ion beams</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Nanomaterials</subject><subject>Nanostructured materials</subject><subject>Nanotechnology</subject><subject>Nanowires</subject><subject>Production methods</subject><subject>Studies</subject><subject>Superconductors</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkE1Lw0AQhhdRsFZv_oCAFw-m7mc28SZiVSh4qecwuztpU5qk7iYH_fVubA8igqeBmWdeZh5CLhmdMaX07abxM06ZmAkuj8iEUylTJXh2TCY0z2XKCyZPyVkIG0qZolpOCCzXHjF1dYNtqLsWtkkLbRd6P9h-8BgS85FUnR0CuiTOE4PQJD3adVu_DxjukjkYX1voxyG0LrFr8GB79PXnd_OcnFSwDXhxqFPyNn9cPjyni9enl4f7RWqFFn3KJVeFMTnLKJWouM5z5EYLJkBlmdNcZBUzUjsErq0qJFWgMyMq4xy6AsSUXO9zd74bL-vLpg4Wt1tosRtCyaRWSuQ54xG9-oVuusHH30cqRguqCxqpmz1lfReCx6rc-boB_1EyWo6-y-i7HH2X0XfE0z0eItau0P8I_ZufHeKhiQbdCv9Z-AIeCZIV</recordid><startdate>20131128</startdate><enddate>20131128</enddate><creator>Li, Wuxia</creator><creator>Gu, Changzhi</creator><creator>Cui, Ajuan</creator><creator>Fenton, J.C.</creator><creator>Jiang, Qianqing</creator><creator>Warburton, P.A.</creator><creator>Shen, Tiehan H.</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0W</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20131128</creationdate><title>Three-dimensional nanostructures by focused ion beam techniques: Fabrication and characterization</title><author>Li, Wuxia ; Gu, Changzhi ; Cui, Ajuan ; Fenton, J.C. ; Jiang, Qianqing ; Warburton, P.A. ; Shen, Tiehan H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-24259bb816004e52788e2b7313a566d7236f1b47dea27c59405a76b3fbdded9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>3-D technology</topic><topic>Adsorption</topic><topic>Analysis</topic><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>By products</topic><topic>Decomposition</topic><topic>Electronics</topic><topic>Electrons</topic><topic>Inorganic Chemistry</topic><topic>Invited Feature Papers</topic><topic>Ion beams</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Nanomaterials</topic><topic>Nanostructured materials</topic><topic>Nanotechnology</topic><topic>Nanowires</topic><topic>Production methods</topic><topic>Studies</topic><topic>Superconductors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Wuxia</creatorcontrib><creatorcontrib>Gu, Changzhi</creatorcontrib><creatorcontrib>Cui, Ajuan</creatorcontrib><creatorcontrib>Fenton, J.C.</creatorcontrib><creatorcontrib>Jiang, Qianqing</creatorcontrib><creatorcontrib>Warburton, P.A.</creatorcontrib><creatorcontrib>Shen, Tiehan H.</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Wuxia</au><au>Gu, Changzhi</au><au>Cui, Ajuan</au><au>Fenton, J.C.</au><au>Jiang, Qianqing</au><au>Warburton, P.A.</au><au>Shen, Tiehan H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-dimensional nanostructures by focused ion beam techniques: Fabrication and characterization</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2013-11-28</date><risdate>2013</risdate><volume>28</volume><issue>22</issue><spage>3063</spage><epage>3078</epage><pages>3063-3078</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><coden>JMREEE</coden><abstract>Three-dimensional (3D) nanostructures and nanodevices have attracted tremendous interest in the past few years due to their special mechanical and physical properties. Nanodevices using 3D nanostructures as the building blocks have been demonstrated to exhibit multifunctionality and functions that conventional planar devices cannot achieve. In this article, we report and review focused ion beam techniques for direct site-specific growth of 3D nanostructures and postgrowth shape modification of freestanding nanostructures by ion beam-induced chemical vapor deposition and ion-beam-irradiation-induced plastic bending, respectively. Such techniques have shown nanometer-scale resolution and accuracy in the fabrication of metallic nanoelectrodes, 3D pickup coils, nanogaps, and multibranched structures. Characterization of the resulting nanostructures shows that focused ion beam techniques allow conducting and superconducting freestanding 3D structures to be tailored in size, geometry, and integrated with planar electronic, mechanical, and superconducting nanodevices, potentially enabling lab-on-a-chip experiments.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2013.324</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2013-11, Vol.28 (22), p.3063-3078
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_miscellaneous_1475538812
source Cambridge Journals; Springer Nature - Complete Springer Journals
subjects 3-D technology
Adsorption
Analysis
Applied and Technical Physics
Biomaterials
By products
Decomposition
Electronics
Electrons
Inorganic Chemistry
Invited Feature Papers
Ion beams
Materials Engineering
Materials research
Materials Science
Nanomaterials
Nanostructured materials
Nanotechnology
Nanowires
Production methods
Studies
Superconductors
title Three-dimensional nanostructures by focused ion beam techniques: Fabrication and characterization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A45%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-dimensional%20nanostructures%20by%20focused%20ion%20beam%20techniques:%20Fabrication%20and%20characterization&rft.jtitle=Journal%20of%20materials%20research&rft.au=Li,%20Wuxia&rft.date=2013-11-28&rft.volume=28&rft.issue=22&rft.spage=3063&rft.epage=3078&rft.pages=3063-3078&rft.issn=0884-2914&rft.eissn=2044-5326&rft.coden=JMREEE&rft_id=info:doi/10.1557/jmr.2013.324&rft_dat=%3Cproquest_cross%3E1475538812%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1459430790&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2013_324&rfr_iscdi=true