Application of Computational Intelligence in Order to Develop Hybrid Orbit Propagation Methods

We present a new approach in astrodynamics and celestial mechanics fields, called hybrid perturbation theory. A hybrid perturbation theory combines an integrating technique, general perturbation theory or special perturbation theory or semianalytical method, with a forecasting technique, statistical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2013-01, Vol.2013 (2013), p.1-11
Hauptverfasser: Perez, Ivan, San-Juan, Juan Felix, San-Martin, Montserrat, Lopez-Ochoa, Luis Maria
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 2013
container_start_page 1
container_title Mathematical problems in engineering
container_volume 2013
creator Perez, Ivan
San-Juan, Juan Felix
San-Martin, Montserrat
Lopez-Ochoa, Luis Maria
description We present a new approach in astrodynamics and celestial mechanics fields, called hybrid perturbation theory. A hybrid perturbation theory combines an integrating technique, general perturbation theory or special perturbation theory or semianalytical method, with a forecasting technique, statistical time series model or computational intelligence method. This combination permits an increase in the accuracy of the integrating technique, through the modeling of higher-order terms and other external forces not considered in the integrating technique. In this paper, neural networks have been used as time series forecasters in order to help two economic general perturbation theories describe the motion of an orbiter only perturbed by the Earth’s oblateness.
doi_str_mv 10.1155/2013/631628
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1475538464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1475538464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-d3e01e0f50c6ea51e392db8d54f4add4b549057968852aa299785b73869dd5b23</originalsourceid><addsrcrecordid>eNqF0E1LxDAQBuAiCurqybsEvIhSzWc3Ocr6sYKyHhQ8WdJmqpFuU5NU8d-btR7Ei6dMhodh5s2yPYJPCBHilGLCTgtGCirXsi0iCpYLwqfrqcaU54Syx81sO4RXjCkRRG5lT2d939paR-s65Bo0c8t-iN9f3aLrLkLb2mfoakC2QwtvwKPo0Dm8Q-t6NP-svDWpX9mI7rzr9fM46hbiizNhJ9todBtg9-edZA-XF_ezeX6zuLqend3kNZMq5oYBJoAbgesCtCDAFDWVNII3XBvDK8EVFlNVSCmo1lSpqRTVlMlCGSMqyibZ4Ti39-5tgBDLpQ112l134IZQphCEYJIXPNGDP_TVDT5dm5RSWFJFuUzqeFS1dyF4aMre26X2nyXB5SrrcpV1OWad9NGoX2xn9If9B--PGBKBRv_CjGIu2BcJaocK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1990829248</pqid></control><display><type>article</type><title>Application of Computational Intelligence in Order to Develop Hybrid Orbit Propagation Methods</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Perez, Ivan ; San-Juan, Juan Felix ; San-Martin, Montserrat ; Lopez-Ochoa, Luis Maria</creator><contributor>Kuo, Ren-Jieh</contributor><creatorcontrib>Perez, Ivan ; San-Juan, Juan Felix ; San-Martin, Montserrat ; Lopez-Ochoa, Luis Maria ; Kuo, Ren-Jieh</creatorcontrib><description>We present a new approach in astrodynamics and celestial mechanics fields, called hybrid perturbation theory. A hybrid perturbation theory combines an integrating technique, general perturbation theory or special perturbation theory or semianalytical method, with a forecasting technique, statistical time series model or computational intelligence method. This combination permits an increase in the accuracy of the integrating technique, through the modeling of higher-order terms and other external forces not considered in the integrating technique. In this paper, neural networks have been used as time series forecasters in order to help two economic general perturbation theories describe the motion of an orbiter only perturbed by the Earth’s oblateness.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2013/631628</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Artificial satellites ; Astrodynamics ; Celestial mechanics ; Computation ; Earth orbits ; Economics ; Intelligence ; Mathematical models ; Mathematical problems ; Mechanics ; Methods ; Neural networks ; Operations research ; Orbits ; Perturbation theory ; Time series</subject><ispartof>Mathematical problems in engineering, 2013-01, Vol.2013 (2013), p.1-11</ispartof><rights>Copyright © 2013 Iván Pérez et al.</rights><rights>Copyright © 2013 Iván Pérez et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-d3e01e0f50c6ea51e392db8d54f4add4b549057968852aa299785b73869dd5b23</citedby><cites>FETCH-LOGICAL-c389t-d3e01e0f50c6ea51e392db8d54f4add4b549057968852aa299785b73869dd5b23</cites><orcidid>0000-0003-1638-5956 ; 0000-0003-2916-1150</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Kuo, Ren-Jieh</contributor><creatorcontrib>Perez, Ivan</creatorcontrib><creatorcontrib>San-Juan, Juan Felix</creatorcontrib><creatorcontrib>San-Martin, Montserrat</creatorcontrib><creatorcontrib>Lopez-Ochoa, Luis Maria</creatorcontrib><title>Application of Computational Intelligence in Order to Develop Hybrid Orbit Propagation Methods</title><title>Mathematical problems in engineering</title><description>We present a new approach in astrodynamics and celestial mechanics fields, called hybrid perturbation theory. A hybrid perturbation theory combines an integrating technique, general perturbation theory or special perturbation theory or semianalytical method, with a forecasting technique, statistical time series model or computational intelligence method. This combination permits an increase in the accuracy of the integrating technique, through the modeling of higher-order terms and other external forces not considered in the integrating technique. In this paper, neural networks have been used as time series forecasters in order to help two economic general perturbation theories describe the motion of an orbiter only perturbed by the Earth’s oblateness.</description><subject>Artificial satellites</subject><subject>Astrodynamics</subject><subject>Celestial mechanics</subject><subject>Computation</subject><subject>Earth orbits</subject><subject>Economics</subject><subject>Intelligence</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Mechanics</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Operations research</subject><subject>Orbits</subject><subject>Perturbation theory</subject><subject>Time series</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0E1LxDAQBuAiCurqybsEvIhSzWc3Ocr6sYKyHhQ8WdJmqpFuU5NU8d-btR7Ei6dMhodh5s2yPYJPCBHilGLCTgtGCirXsi0iCpYLwqfrqcaU54Syx81sO4RXjCkRRG5lT2d939paR-s65Bo0c8t-iN9f3aLrLkLb2mfoakC2QwtvwKPo0Dm8Q-t6NP-svDWpX9mI7rzr9fM46hbiizNhJ9todBtg9-edZA-XF_ezeX6zuLqend3kNZMq5oYBJoAbgesCtCDAFDWVNII3XBvDK8EVFlNVSCmo1lSpqRTVlMlCGSMqyibZ4Ti39-5tgBDLpQ112l134IZQphCEYJIXPNGDP_TVDT5dm5RSWFJFuUzqeFS1dyF4aMre26X2nyXB5SrrcpV1OWad9NGoX2xn9If9B--PGBKBRv_CjGIu2BcJaocK</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Perez, Ivan</creator><creator>San-Juan, Juan Felix</creator><creator>San-Martin, Montserrat</creator><creator>Lopez-Ochoa, Luis Maria</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-1638-5956</orcidid><orcidid>https://orcid.org/0000-0003-2916-1150</orcidid></search><sort><creationdate>20130101</creationdate><title>Application of Computational Intelligence in Order to Develop Hybrid Orbit Propagation Methods</title><author>Perez, Ivan ; San-Juan, Juan Felix ; San-Martin, Montserrat ; Lopez-Ochoa, Luis Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-d3e01e0f50c6ea51e392db8d54f4add4b549057968852aa299785b73869dd5b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Artificial satellites</topic><topic>Astrodynamics</topic><topic>Celestial mechanics</topic><topic>Computation</topic><topic>Earth orbits</topic><topic>Economics</topic><topic>Intelligence</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Mechanics</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Operations research</topic><topic>Orbits</topic><topic>Perturbation theory</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perez, Ivan</creatorcontrib><creatorcontrib>San-Juan, Juan Felix</creatorcontrib><creatorcontrib>San-Martin, Montserrat</creatorcontrib><creatorcontrib>Lopez-Ochoa, Luis Maria</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perez, Ivan</au><au>San-Juan, Juan Felix</au><au>San-Martin, Montserrat</au><au>Lopez-Ochoa, Luis Maria</au><au>Kuo, Ren-Jieh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Computational Intelligence in Order to Develop Hybrid Orbit Propagation Methods</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>We present a new approach in astrodynamics and celestial mechanics fields, called hybrid perturbation theory. A hybrid perturbation theory combines an integrating technique, general perturbation theory or special perturbation theory or semianalytical method, with a forecasting technique, statistical time series model or computational intelligence method. This combination permits an increase in the accuracy of the integrating technique, through the modeling of higher-order terms and other external forces not considered in the integrating technique. In this paper, neural networks have been used as time series forecasters in order to help two economic general perturbation theories describe the motion of an orbiter only perturbed by the Earth’s oblateness.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2013/631628</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1638-5956</orcidid><orcidid>https://orcid.org/0000-0003-2916-1150</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical problems in engineering, 2013-01, Vol.2013 (2013), p.1-11
issn 1024-123X
1563-5147
language eng
recordid cdi_proquest_miscellaneous_1475538464
source Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Artificial satellites
Astrodynamics
Celestial mechanics
Computation
Earth orbits
Economics
Intelligence
Mathematical models
Mathematical problems
Mechanics
Methods
Neural networks
Operations research
Orbits
Perturbation theory
Time series
title Application of Computational Intelligence in Order to Develop Hybrid Orbit Propagation Methods
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A06%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Computational%20Intelligence%20in%20Order%20to%20Develop%20Hybrid%20Orbit%20Propagation%20Methods&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Perez,%20Ivan&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2013/631628&rft_dat=%3Cproquest_cross%3E1475538464%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1990829248&rft_id=info:pmid/&rfr_iscdi=true