Application of Computational Intelligence in Order to Develop Hybrid Orbit Propagation Methods
We present a new approach in astrodynamics and celestial mechanics fields, called hybrid perturbation theory. A hybrid perturbation theory combines an integrating technique, general perturbation theory or special perturbation theory or semianalytical method, with a forecasting technique, statistical...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2013-01, Vol.2013 (2013), p.1-11 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 2013 |
container_start_page | 1 |
container_title | Mathematical problems in engineering |
container_volume | 2013 |
creator | Perez, Ivan San-Juan, Juan Felix San-Martin, Montserrat Lopez-Ochoa, Luis Maria |
description | We present a new approach in astrodynamics and celestial mechanics fields, called hybrid perturbation theory. A hybrid perturbation theory combines an integrating technique, general perturbation theory or special perturbation theory or semianalytical method, with a forecasting technique, statistical time series model or computational intelligence method. This combination permits an increase in the accuracy of the integrating technique, through the modeling of higher-order terms and other external forces not considered in the integrating technique. In this paper, neural networks have been used as time series forecasters in order to help two economic general perturbation theories describe the motion of an orbiter only perturbed by the Earth’s oblateness. |
doi_str_mv | 10.1155/2013/631628 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1475538464</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1475538464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-d3e01e0f50c6ea51e392db8d54f4add4b549057968852aa299785b73869dd5b23</originalsourceid><addsrcrecordid>eNqF0E1LxDAQBuAiCurqybsEvIhSzWc3Ocr6sYKyHhQ8WdJmqpFuU5NU8d-btR7Ei6dMhodh5s2yPYJPCBHilGLCTgtGCirXsi0iCpYLwqfrqcaU54Syx81sO4RXjCkRRG5lT2d939paR-s65Bo0c8t-iN9f3aLrLkLb2mfoakC2QwtvwKPo0Dm8Q-t6NP-svDWpX9mI7rzr9fM46hbiizNhJ9todBtg9-edZA-XF_ezeX6zuLqend3kNZMq5oYBJoAbgesCtCDAFDWVNII3XBvDK8EVFlNVSCmo1lSpqRTVlMlCGSMqyibZ4Ti39-5tgBDLpQ112l134IZQphCEYJIXPNGDP_TVDT5dm5RSWFJFuUzqeFS1dyF4aMre26X2nyXB5SrrcpV1OWad9NGoX2xn9If9B--PGBKBRv_CjGIu2BcJaocK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1990829248</pqid></control><display><type>article</type><title>Application of Computational Intelligence in Order to Develop Hybrid Orbit Propagation Methods</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Perez, Ivan ; San-Juan, Juan Felix ; San-Martin, Montserrat ; Lopez-Ochoa, Luis Maria</creator><contributor>Kuo, Ren-Jieh</contributor><creatorcontrib>Perez, Ivan ; San-Juan, Juan Felix ; San-Martin, Montserrat ; Lopez-Ochoa, Luis Maria ; Kuo, Ren-Jieh</creatorcontrib><description>We present a new approach in astrodynamics and celestial mechanics fields, called hybrid perturbation theory. A hybrid perturbation theory combines an integrating technique, general perturbation theory or special perturbation theory or semianalytical method, with a forecasting technique, statistical time series model or computational intelligence method. This combination permits an increase in the accuracy of the integrating technique, through the modeling of higher-order terms and other external forces not considered in the integrating technique. In this paper, neural networks have been used as time series forecasters in order to help two economic general perturbation theories describe the motion of an orbiter only perturbed by the Earth’s oblateness.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2013/631628</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Artificial satellites ; Astrodynamics ; Celestial mechanics ; Computation ; Earth orbits ; Economics ; Intelligence ; Mathematical models ; Mathematical problems ; Mechanics ; Methods ; Neural networks ; Operations research ; Orbits ; Perturbation theory ; Time series</subject><ispartof>Mathematical problems in engineering, 2013-01, Vol.2013 (2013), p.1-11</ispartof><rights>Copyright © 2013 Iván Pérez et al.</rights><rights>Copyright © 2013 Iván Pérez et al.; This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-d3e01e0f50c6ea51e392db8d54f4add4b549057968852aa299785b73869dd5b23</citedby><cites>FETCH-LOGICAL-c389t-d3e01e0f50c6ea51e392db8d54f4add4b549057968852aa299785b73869dd5b23</cites><orcidid>0000-0003-1638-5956 ; 0000-0003-2916-1150</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><contributor>Kuo, Ren-Jieh</contributor><creatorcontrib>Perez, Ivan</creatorcontrib><creatorcontrib>San-Juan, Juan Felix</creatorcontrib><creatorcontrib>San-Martin, Montserrat</creatorcontrib><creatorcontrib>Lopez-Ochoa, Luis Maria</creatorcontrib><title>Application of Computational Intelligence in Order to Develop Hybrid Orbit Propagation Methods</title><title>Mathematical problems in engineering</title><description>We present a new approach in astrodynamics and celestial mechanics fields, called hybrid perturbation theory. A hybrid perturbation theory combines an integrating technique, general perturbation theory or special perturbation theory or semianalytical method, with a forecasting technique, statistical time series model or computational intelligence method. This combination permits an increase in the accuracy of the integrating technique, through the modeling of higher-order terms and other external forces not considered in the integrating technique. In this paper, neural networks have been used as time series forecasters in order to help two economic general perturbation theories describe the motion of an orbiter only perturbed by the Earth’s oblateness.</description><subject>Artificial satellites</subject><subject>Astrodynamics</subject><subject>Celestial mechanics</subject><subject>Computation</subject><subject>Earth orbits</subject><subject>Economics</subject><subject>Intelligence</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Mechanics</subject><subject>Methods</subject><subject>Neural networks</subject><subject>Operations research</subject><subject>Orbits</subject><subject>Perturbation theory</subject><subject>Time series</subject><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0E1LxDAQBuAiCurqybsEvIhSzWc3Ocr6sYKyHhQ8WdJmqpFuU5NU8d-btR7Ei6dMhodh5s2yPYJPCBHilGLCTgtGCirXsi0iCpYLwqfrqcaU54Syx81sO4RXjCkRRG5lT2d939paR-s65Bo0c8t-iN9f3aLrLkLb2mfoakC2QwtvwKPo0Dm8Q-t6NP-svDWpX9mI7rzr9fM46hbiizNhJ9todBtg9-edZA-XF_ezeX6zuLqend3kNZMq5oYBJoAbgesCtCDAFDWVNII3XBvDK8EVFlNVSCmo1lSpqRTVlMlCGSMqyibZ4Ti39-5tgBDLpQ112l134IZQphCEYJIXPNGDP_TVDT5dm5RSWFJFuUzqeFS1dyF4aMre26X2nyXB5SrrcpV1OWad9NGoX2xn9If9B--PGBKBRv_CjGIu2BcJaocK</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Perez, Ivan</creator><creator>San-Juan, Juan Felix</creator><creator>San-Martin, Montserrat</creator><creator>Lopez-Ochoa, Luis Maria</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0003-1638-5956</orcidid><orcidid>https://orcid.org/0000-0003-2916-1150</orcidid></search><sort><creationdate>20130101</creationdate><title>Application of Computational Intelligence in Order to Develop Hybrid Orbit Propagation Methods</title><author>Perez, Ivan ; San-Juan, Juan Felix ; San-Martin, Montserrat ; Lopez-Ochoa, Luis Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-d3e01e0f50c6ea51e392db8d54f4add4b549057968852aa299785b73869dd5b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Artificial satellites</topic><topic>Astrodynamics</topic><topic>Celestial mechanics</topic><topic>Computation</topic><topic>Earth orbits</topic><topic>Economics</topic><topic>Intelligence</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Mechanics</topic><topic>Methods</topic><topic>Neural networks</topic><topic>Operations research</topic><topic>Orbits</topic><topic>Perturbation theory</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Perez, Ivan</creatorcontrib><creatorcontrib>San-Juan, Juan Felix</creatorcontrib><creatorcontrib>San-Martin, Montserrat</creatorcontrib><creatorcontrib>Lopez-Ochoa, Luis Maria</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Mathematical problems in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perez, Ivan</au><au>San-Juan, Juan Felix</au><au>San-Martin, Montserrat</au><au>Lopez-Ochoa, Luis Maria</au><au>Kuo, Ren-Jieh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of Computational Intelligence in Order to Develop Hybrid Orbit Propagation Methods</atitle><jtitle>Mathematical problems in engineering</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>We present a new approach in astrodynamics and celestial mechanics fields, called hybrid perturbation theory. A hybrid perturbation theory combines an integrating technique, general perturbation theory or special perturbation theory or semianalytical method, with a forecasting technique, statistical time series model or computational intelligence method. This combination permits an increase in the accuracy of the integrating technique, through the modeling of higher-order terms and other external forces not considered in the integrating technique. In this paper, neural networks have been used as time series forecasters in order to help two economic general perturbation theories describe the motion of an orbiter only perturbed by the Earth’s oblateness.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2013/631628</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1638-5956</orcidid><orcidid>https://orcid.org/0000-0003-2916-1150</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1024-123X |
ispartof | Mathematical problems in engineering, 2013-01, Vol.2013 (2013), p.1-11 |
issn | 1024-123X 1563-5147 |
language | eng |
recordid | cdi_proquest_miscellaneous_1475538464 |
source | Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Artificial satellites Astrodynamics Celestial mechanics Computation Earth orbits Economics Intelligence Mathematical models Mathematical problems Mechanics Methods Neural networks Operations research Orbits Perturbation theory Time series |
title | Application of Computational Intelligence in Order to Develop Hybrid Orbit Propagation Methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T20%3A06%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20Computational%20Intelligence%20in%20Order%20to%20Develop%20Hybrid%20Orbit%20Propagation%20Methods&rft.jtitle=Mathematical%20problems%20in%20engineering&rft.au=Perez,%20Ivan&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2013/631628&rft_dat=%3Cproquest_cross%3E1475538464%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1990829248&rft_id=info:pmid/&rfr_iscdi=true |