Comparative performance analysis of spectral estimation algorithms and computational optimization of a multispectral imaging system for print inspection

We have analyzed the performance of simulated multispectral systems for the spectral recovery of reflectance of printer inks from camera responses, including noise. To estimate reflectance we compared the performance of four algorithms which were not comparatively tested using the same data sets bef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Color research and application 2014-02, Vol.39 (1), p.16-27
Hauptverfasser: Valero, Eva M., Hu, Yu, Hernández-Andrés, Javier, Eckhard, Timo, Nieves, Juan L., Romero, Javier, Schnitzlein, Markus, Nowack, Dietmar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue 1
container_start_page 16
container_title Color research and application
container_volume 39
creator Valero, Eva M.
Hu, Yu
Hernández-Andrés, Javier
Eckhard, Timo
Nieves, Juan L.
Romero, Javier
Schnitzlein, Markus
Nowack, Dietmar
description We have analyzed the performance of simulated multispectral systems for the spectral recovery of reflectance of printer inks from camera responses, including noise. To estimate reflectance we compared the performance of four algorithms which were not comparatively tested using the same data sets before. The criteria for selection of the algorithms were robustness against noise, amount of data needed as inputs (training set, spectral responsivities) and lacking of use of dimensionality reduction techniques. Three different sensor sets and training sets were used. We analyzed the differences in the spanning of the subspaces found for the three training sets, concluding that the ink reflectances have characteristic features. The best performance was obtained using the kernel and the radial basis function neural‐net‐based algorithms for the training set composed of printer inks reflectances, whereas for the other two training sets (composed of samples from the ColorChecker DC and Vhrel's reflectances' set) the quality of the recovered samples was more uniform among the algorithms. We also have performed an optimization to choose the best sensor set for the multispectral system with a reduced number of sensors. © 2012 Wiley Periodicals, Inc. Col Res Appl, 39, 16–27, 2014
doi_str_mv 10.1002/col.21763
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1475530651</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1475530651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3893-b70ddb179dfe879b427c945d09b8017ef8b6165d731df89e6c80d15c27d0694d3</originalsourceid><addsrcrecordid>eNp10MFu2yAABmA0tdLSdIe9Acfu4ARMAPu4ZlvaKmo1KVukXRAGnNFi44LTNn2SPW5pvObWkw98_4_5AfiM0QQjlE-Vd5Mcc0Y-gBGmOcoY4cURGCHCcJYTzD-CkxhvEUKUFHwE_s1908kge_tgYGdC7UMjW2WgbKXbRRuhr2HsjOqDdNDE3jbJ-hZKt_HB9n-bmKiGKtVs-_1Rcr5Lzj4PMhVI2Gxdbw89qWRj2w2Mu9ibBqZLYRds20Pb7k2KnYLjWrpoPv3_jsGvH99X84tsebO4nH9dZooUJckqjrSuMC91bQpeVrOcq3JGNSqrAmFu6qJimFHNCdZ1URqmCqQxVTnXiJUzTcbgbOjtgr_fpgeKxkZlnJOt8dso8IxTShCjONEvA1XBxxhMLdJPNzLsBEbidX2R1hf79ZOdDvbROrN7H4r5zfItkQ0JmzZ5OiRkuBOME07F-noh1j9_r_ifq3PxjbwA9aKa6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1475530651</pqid></control><display><type>article</type><title>Comparative performance analysis of spectral estimation algorithms and computational optimization of a multispectral imaging system for print inspection</title><source>Access via Wiley Online Library</source><creator>Valero, Eva M. ; Hu, Yu ; Hernández-Andrés, Javier ; Eckhard, Timo ; Nieves, Juan L. ; Romero, Javier ; Schnitzlein, Markus ; Nowack, Dietmar</creator><creatorcontrib>Valero, Eva M. ; Hu, Yu ; Hernández-Andrés, Javier ; Eckhard, Timo ; Nieves, Juan L. ; Romero, Javier ; Schnitzlein, Markus ; Nowack, Dietmar</creatorcontrib><description>We have analyzed the performance of simulated multispectral systems for the spectral recovery of reflectance of printer inks from camera responses, including noise. To estimate reflectance we compared the performance of four algorithms which were not comparatively tested using the same data sets before. The criteria for selection of the algorithms were robustness against noise, amount of data needed as inputs (training set, spectral responsivities) and lacking of use of dimensionality reduction techniques. Three different sensor sets and training sets were used. We analyzed the differences in the spanning of the subspaces found for the three training sets, concluding that the ink reflectances have characteristic features. The best performance was obtained using the kernel and the radial basis function neural‐net‐based algorithms for the training set composed of printer inks reflectances, whereas for the other two training sets (composed of samples from the ColorChecker DC and Vhrel's reflectances' set) the quality of the recovered samples was more uniform among the algorithms. We also have performed an optimization to choose the best sensor set for the multispectral system with a reduced number of sensors. © 2012 Wiley Periodicals, Inc. Col Res Appl, 39, 16–27, 2014</description><identifier>ISSN: 0361-2317</identifier><identifier>EISSN: 1520-6378</identifier><identifier>DOI: 10.1002/col.21763</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Algorithms ; multispectral imaging ; spectral estimation</subject><ispartof>Color research and application, 2014-02, Vol.39 (1), p.16-27</ispartof><rights>Copyright © 2012 Wiley Periodicals, Inc., a Wiley company</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3893-b70ddb179dfe879b427c945d09b8017ef8b6165d731df89e6c80d15c27d0694d3</citedby><cites>FETCH-LOGICAL-c3893-b70ddb179dfe879b427c945d09b8017ef8b6165d731df89e6c80d15c27d0694d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcol.21763$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcol.21763$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Valero, Eva M.</creatorcontrib><creatorcontrib>Hu, Yu</creatorcontrib><creatorcontrib>Hernández-Andrés, Javier</creatorcontrib><creatorcontrib>Eckhard, Timo</creatorcontrib><creatorcontrib>Nieves, Juan L.</creatorcontrib><creatorcontrib>Romero, Javier</creatorcontrib><creatorcontrib>Schnitzlein, Markus</creatorcontrib><creatorcontrib>Nowack, Dietmar</creatorcontrib><title>Comparative performance analysis of spectral estimation algorithms and computational optimization of a multispectral imaging system for print inspection</title><title>Color research and application</title><addtitle>Color Res. Appl</addtitle><description>We have analyzed the performance of simulated multispectral systems for the spectral recovery of reflectance of printer inks from camera responses, including noise. To estimate reflectance we compared the performance of four algorithms which were not comparatively tested using the same data sets before. The criteria for selection of the algorithms were robustness against noise, amount of data needed as inputs (training set, spectral responsivities) and lacking of use of dimensionality reduction techniques. Three different sensor sets and training sets were used. We analyzed the differences in the spanning of the subspaces found for the three training sets, concluding that the ink reflectances have characteristic features. The best performance was obtained using the kernel and the radial basis function neural‐net‐based algorithms for the training set composed of printer inks reflectances, whereas for the other two training sets (composed of samples from the ColorChecker DC and Vhrel's reflectances' set) the quality of the recovered samples was more uniform among the algorithms. We also have performed an optimization to choose the best sensor set for the multispectral system with a reduced number of sensors. © 2012 Wiley Periodicals, Inc. Col Res Appl, 39, 16–27, 2014</description><subject>Algorithms</subject><subject>multispectral imaging</subject><subject>spectral estimation</subject><issn>0361-2317</issn><issn>1520-6378</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp10MFu2yAABmA0tdLSdIe9Acfu4ARMAPu4ZlvaKmo1KVukXRAGnNFi44LTNn2SPW5pvObWkw98_4_5AfiM0QQjlE-Vd5Mcc0Y-gBGmOcoY4cURGCHCcJYTzD-CkxhvEUKUFHwE_s1908kge_tgYGdC7UMjW2WgbKXbRRuhr2HsjOqDdNDE3jbJ-hZKt_HB9n-bmKiGKtVs-_1Rcr5Lzj4PMhVI2Gxdbw89qWRj2w2Mu9ibBqZLYRds20Pb7k2KnYLjWrpoPv3_jsGvH99X84tsebO4nH9dZooUJckqjrSuMC91bQpeVrOcq3JGNSqrAmFu6qJimFHNCdZ1URqmCqQxVTnXiJUzTcbgbOjtgr_fpgeKxkZlnJOt8dso8IxTShCjONEvA1XBxxhMLdJPNzLsBEbidX2R1hf79ZOdDvbROrN7H4r5zfItkQ0JmzZ5OiRkuBOME07F-noh1j9_r_ifq3PxjbwA9aKa6g</recordid><startdate>201402</startdate><enddate>201402</enddate><creator>Valero, Eva M.</creator><creator>Hu, Yu</creator><creator>Hernández-Andrés, Javier</creator><creator>Eckhard, Timo</creator><creator>Nieves, Juan L.</creator><creator>Romero, Javier</creator><creator>Schnitzlein, Markus</creator><creator>Nowack, Dietmar</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>201402</creationdate><title>Comparative performance analysis of spectral estimation algorithms and computational optimization of a multispectral imaging system for print inspection</title><author>Valero, Eva M. ; Hu, Yu ; Hernández-Andrés, Javier ; Eckhard, Timo ; Nieves, Juan L. ; Romero, Javier ; Schnitzlein, Markus ; Nowack, Dietmar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3893-b70ddb179dfe879b427c945d09b8017ef8b6165d731df89e6c80d15c27d0694d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>multispectral imaging</topic><topic>spectral estimation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valero, Eva M.</creatorcontrib><creatorcontrib>Hu, Yu</creatorcontrib><creatorcontrib>Hernández-Andrés, Javier</creatorcontrib><creatorcontrib>Eckhard, Timo</creatorcontrib><creatorcontrib>Nieves, Juan L.</creatorcontrib><creatorcontrib>Romero, Javier</creatorcontrib><creatorcontrib>Schnitzlein, Markus</creatorcontrib><creatorcontrib>Nowack, Dietmar</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Color research and application</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valero, Eva M.</au><au>Hu, Yu</au><au>Hernández-Andrés, Javier</au><au>Eckhard, Timo</au><au>Nieves, Juan L.</au><au>Romero, Javier</au><au>Schnitzlein, Markus</au><au>Nowack, Dietmar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative performance analysis of spectral estimation algorithms and computational optimization of a multispectral imaging system for print inspection</atitle><jtitle>Color research and application</jtitle><addtitle>Color Res. Appl</addtitle><date>2014-02</date><risdate>2014</risdate><volume>39</volume><issue>1</issue><spage>16</spage><epage>27</epage><pages>16-27</pages><issn>0361-2317</issn><eissn>1520-6378</eissn><abstract>We have analyzed the performance of simulated multispectral systems for the spectral recovery of reflectance of printer inks from camera responses, including noise. To estimate reflectance we compared the performance of four algorithms which were not comparatively tested using the same data sets before. The criteria for selection of the algorithms were robustness against noise, amount of data needed as inputs (training set, spectral responsivities) and lacking of use of dimensionality reduction techniques. Three different sensor sets and training sets were used. We analyzed the differences in the spanning of the subspaces found for the three training sets, concluding that the ink reflectances have characteristic features. The best performance was obtained using the kernel and the radial basis function neural‐net‐based algorithms for the training set composed of printer inks reflectances, whereas for the other two training sets (composed of samples from the ColorChecker DC and Vhrel's reflectances' set) the quality of the recovered samples was more uniform among the algorithms. We also have performed an optimization to choose the best sensor set for the multispectral system with a reduced number of sensors. © 2012 Wiley Periodicals, Inc. Col Res Appl, 39, 16–27, 2014</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/col.21763</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-2317
ispartof Color research and application, 2014-02, Vol.39 (1), p.16-27
issn 0361-2317
1520-6378
language eng
recordid cdi_proquest_miscellaneous_1475530651
source Access via Wiley Online Library
subjects Algorithms
multispectral imaging
spectral estimation
title Comparative performance analysis of spectral estimation algorithms and computational optimization of a multispectral imaging system for print inspection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T22%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20performance%20analysis%20of%20spectral%20estimation%20algorithms%20and%20computational%20optimization%20of%20a%20multispectral%20imaging%20system%20for%20print%20inspection&rft.jtitle=Color%20research%20and%20application&rft.au=Valero,%20Eva%20M.&rft.date=2014-02&rft.volume=39&rft.issue=1&rft.spage=16&rft.epage=27&rft.pages=16-27&rft.issn=0361-2317&rft.eissn=1520-6378&rft_id=info:doi/10.1002/col.21763&rft_dat=%3Cproquest_cross%3E1475530651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1475530651&rft_id=info:pmid/&rfr_iscdi=true