Fuzzy optimum PSO: PSO with optimized fuzzy controllers
Since the search process of the particle swarm optimization (PSO) technique is non-linear and very complicated, it is hard if not impossible, to mathematically model the search process and dynamically adjust the PSO parameters. Thus, already some fuzzy systems proposed to control the important struc...
Gespeichert in:
Veröffentlicht in: | Majlesi journal of electrical engineering 2012-09, Vol.6 (3), p.8-8 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 3 |
container_start_page | 8 |
container_title | Majlesi journal of electrical engineering |
container_volume | 6 |
creator | Mokhlessi, Omid Zahiri, Seyed Hamid Mehrshad, Nasser |
description | Since the search process of the particle swarm optimization (PSO) technique is non-linear and very complicated, it is hard if not impossible, to mathematically model the search process and dynamically adjust the PSO parameters. Thus, already some fuzzy systems proposed to control the important structural parameters of basic PSO. However, in those researches no effort were reported for optimizing the structural parameters of the designed fuzzy controller. In this paper, a new algorithm called Fuzzy Optimum PSO (FOPSO) has been introduced. FOPSO utilizes two optimized fuzzy systems for optimal controlling the main parameters of basic PSO. Extensive experimental results on many benchmark functions with different dimensions show that the powerfulness and effectiveness of the proposed FOPSO outperforms other versions of PSO. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1475530019</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3135324261</sourcerecordid><originalsourceid>FETCH-LOGICAL-p619-6fa62b4056de49b5e8e32ad03745665d7e6c0e15585a9f5cef2d1d7a55d6f22c3</originalsourceid><addsrcrecordid>eNpdjktLw0AUhQexYGn7HwJu3ATmdefhTopVoVDB7ss0cwdTkkzMJIj59UbbhXgW5x4OH5dzReacUpMzycT1n3xDVimd6CRDuTZyTvRmGMevLLZ9WQ919vq2u_-x7LPs389tOaLPwi9VxKbvYlVhl5ZkFlyVcHW5C7LfPO7Xz_l29_SyftjmrWI2V8EpfpQUlEdpj4AGBXeeCi1BKfAaVUGRARhwNkCBgXvmtQPwKnBeiAW5O79tu_gxYOoPdZkKrCrXYBzSgUkNIChldkJv_6GnOHTNNG6iFLWGcdDiG7rpUOo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1460981257</pqid></control><display><type>article</type><title>Fuzzy optimum PSO: PSO with optimized fuzzy controllers</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Mokhlessi, Omid ; Zahiri, Seyed Hamid ; Mehrshad, Nasser</creator><creatorcontrib>Mokhlessi, Omid ; Zahiri, Seyed Hamid ; Mehrshad, Nasser</creatorcontrib><description>Since the search process of the particle swarm optimization (PSO) technique is non-linear and very complicated, it is hard if not impossible, to mathematically model the search process and dynamically adjust the PSO parameters. Thus, already some fuzzy systems proposed to control the important structural parameters of basic PSO. However, in those researches no effort were reported for optimizing the structural parameters of the designed fuzzy controller. In this paper, a new algorithm called Fuzzy Optimum PSO (FOPSO) has been introduced. FOPSO utilizes two optimized fuzzy systems for optimal controlling the main parameters of basic PSO. Extensive experimental results on many benchmark functions with different dimensions show that the powerfulness and effectiveness of the proposed FOPSO outperforms other versions of PSO.</description><identifier>ISSN: 2008-1413</identifier><identifier>EISSN: 2008-1413</identifier><language>eng</language><publisher>Isfahan: Islamic Azad University Majlesi</publisher><subject>Control systems</subject><ispartof>Majlesi journal of electrical engineering, 2012-09, Vol.6 (3), p.8-8</ispartof><rights>Copyright Islamic Azad University Majlesi Sep 2012</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780</link.rule.ids></links><search><creatorcontrib>Mokhlessi, Omid</creatorcontrib><creatorcontrib>Zahiri, Seyed Hamid</creatorcontrib><creatorcontrib>Mehrshad, Nasser</creatorcontrib><title>Fuzzy optimum PSO: PSO with optimized fuzzy controllers</title><title>Majlesi journal of electrical engineering</title><description>Since the search process of the particle swarm optimization (PSO) technique is non-linear and very complicated, it is hard if not impossible, to mathematically model the search process and dynamically adjust the PSO parameters. Thus, already some fuzzy systems proposed to control the important structural parameters of basic PSO. However, in those researches no effort were reported for optimizing the structural parameters of the designed fuzzy controller. In this paper, a new algorithm called Fuzzy Optimum PSO (FOPSO) has been introduced. FOPSO utilizes two optimized fuzzy systems for optimal controlling the main parameters of basic PSO. Extensive experimental results on many benchmark functions with different dimensions show that the powerfulness and effectiveness of the proposed FOPSO outperforms other versions of PSO.</description><subject>Control systems</subject><issn>2008-1413</issn><issn>2008-1413</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdjktLw0AUhQexYGn7HwJu3ATmdefhTopVoVDB7ss0cwdTkkzMJIj59UbbhXgW5x4OH5dzReacUpMzycT1n3xDVimd6CRDuTZyTvRmGMevLLZ9WQ919vq2u_-x7LPs389tOaLPwi9VxKbvYlVhl5ZkFlyVcHW5C7LfPO7Xz_l29_SyftjmrWI2V8EpfpQUlEdpj4AGBXeeCi1BKfAaVUGRARhwNkCBgXvmtQPwKnBeiAW5O79tu_gxYOoPdZkKrCrXYBzSgUkNIChldkJv_6GnOHTNNG6iFLWGcdDiG7rpUOo</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Mokhlessi, Omid</creator><creator>Zahiri, Seyed Hamid</creator><creator>Mehrshad, Nasser</creator><general>Islamic Azad University Majlesi</general><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120901</creationdate><title>Fuzzy optimum PSO: PSO with optimized fuzzy controllers</title><author>Mokhlessi, Omid ; Zahiri, Seyed Hamid ; Mehrshad, Nasser</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p619-6fa62b4056de49b5e8e32ad03745665d7e6c0e15585a9f5cef2d1d7a55d6f22c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Control systems</topic><toplevel>online_resources</toplevel><creatorcontrib>Mokhlessi, Omid</creatorcontrib><creatorcontrib>Zahiri, Seyed Hamid</creatorcontrib><creatorcontrib>Mehrshad, Nasser</creatorcontrib><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Majlesi journal of electrical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mokhlessi, Omid</au><au>Zahiri, Seyed Hamid</au><au>Mehrshad, Nasser</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fuzzy optimum PSO: PSO with optimized fuzzy controllers</atitle><jtitle>Majlesi journal of electrical engineering</jtitle><date>2012-09-01</date><risdate>2012</risdate><volume>6</volume><issue>3</issue><spage>8</spage><epage>8</epage><pages>8-8</pages><issn>2008-1413</issn><eissn>2008-1413</eissn><abstract>Since the search process of the particle swarm optimization (PSO) technique is non-linear and very complicated, it is hard if not impossible, to mathematically model the search process and dynamically adjust the PSO parameters. Thus, already some fuzzy systems proposed to control the important structural parameters of basic PSO. However, in those researches no effort were reported for optimizing the structural parameters of the designed fuzzy controller. In this paper, a new algorithm called Fuzzy Optimum PSO (FOPSO) has been introduced. FOPSO utilizes two optimized fuzzy systems for optimal controlling the main parameters of basic PSO. Extensive experimental results on many benchmark functions with different dimensions show that the powerfulness and effectiveness of the proposed FOPSO outperforms other versions of PSO.</abstract><cop>Isfahan</cop><pub>Islamic Azad University Majlesi</pub><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2008-1413 |
ispartof | Majlesi journal of electrical engineering, 2012-09, Vol.6 (3), p.8-8 |
issn | 2008-1413 2008-1413 |
language | eng |
recordid | cdi_proquest_miscellaneous_1475530019 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Control systems |
title | Fuzzy optimum PSO: PSO with optimized fuzzy controllers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T14%3A42%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fuzzy%20optimum%20PSO:%20PSO%20with%20optimized%20fuzzy%20controllers&rft.jtitle=Majlesi%20journal%20of%20electrical%20engineering&rft.au=Mokhlessi,%20Omid&rft.date=2012-09-01&rft.volume=6&rft.issue=3&rft.spage=8&rft.epage=8&rft.pages=8-8&rft.issn=2008-1413&rft.eissn=2008-1413&rft_id=info:doi/&rft_dat=%3Cproquest%3E3135324261%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1460981257&rft_id=info:pmid/&rfr_iscdi=true |