Single-cell imaging of Wnt palmitoylation by the acyltransferase porcupine

Clickable fatty acids coupled with in situ proximity ligation allow visualization of Wnt as it trafficks through the secretory pathway, defining roles for palmitoylation and glycosylation in controlling Wnt activity and exploring the substrate specificity and regulation of the Wnt-modifying porcupin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemical biology 2014-01, Vol.10 (1), p.61-68
Hauptverfasser: Gao, Xinxin, Hannoush, Rami N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 68
container_issue 1
container_start_page 61
container_title Nature chemical biology
container_volume 10
creator Gao, Xinxin
Hannoush, Rami N
description Clickable fatty acids coupled with in situ proximity ligation allow visualization of Wnt as it trafficks through the secretory pathway, defining roles for palmitoylation and glycosylation in controlling Wnt activity and exploring the substrate specificity and regulation of the Wnt-modifying porcupine. Wnts are secreted palmitoylated glycoproteins that are important in embryonic development and human cancers. Here we report a method for imaging the palmitoylated form of Wnt proteins with subcellular resolution using clickable bioorthogonal fatty acids and in situ proximity ligation. Palmitoylated Wnt3a is visualized throughout the secretory pathway and trafficks to multivesicular bodies that act as export sites in secretory cells. We establish that glycosylation is not required for Wnt3a palmitoylation, which is necessary but not sufficient for Wnt3a secretion. Wnt3a is palmitoylated by fatty acids 13–16 carbons in length at Ser209 but not at Cys77, consistent with a slow turnover rate. We find that porcupine (PORCN) itself is palmitoylated, demonstrating what is to our knowledge the first example of palmitoylation of an MBOAT protein, and this modification partially regulates Wnt palmitoylation and signaling. Our data reveal the role of O-palmitoylation in Wnt signaling and suggest another layer of cellular control over PORCN function and Wnt secretion.
doi_str_mv 10.1038/nchembio.1392
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1469653352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3415447381</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-82bc49de3426d88365c0c3a152374789ec03e3d1fb01df01d9e71a0108006a093</originalsourceid><addsrcrecordid>eNptkM9LwzAUx4Mobk6PXiXgxUtnfrRpepThTwYeVDyWNH3dOtqkJu2h_70Z20TEQ0ge-fB9730QuqRkTgmXt0avoS1qO6c8Y0doSpOERXEssuOfd0Im6Mz7DSFcCCpP0YTFLGNEZFP08labVQORhqbBdatWocS2wp-mx51q2rq3Y6P62hpcjLhfA1Z6bHqnjK_AKQ-4s04PXW3gHJ1UqvFwsb9n6OPh_n3xFC1fH58Xd8tIx0z0kWSFjrMSeKhKKblINNFc0YTxNE5lBppw4CWtCkLLKpwMUqoIJZIQoUjGZ-hml9s5-zWA7_O29tv5lQE7-JyG5UXCeQicoes_6MYOzoTp8uAmJVLElAYq2lHaWe8dVHnnggo35pTkW8n5QXK-lRz4q33qULRQ_tAHqwGY7wAfvswK3K-2_yZ-Ax__iD8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1557086411</pqid></control><display><type>article</type><title>Single-cell imaging of Wnt palmitoylation by the acyltransferase porcupine</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Gao, Xinxin ; Hannoush, Rami N</creator><creatorcontrib>Gao, Xinxin ; Hannoush, Rami N</creatorcontrib><description>Clickable fatty acids coupled with in situ proximity ligation allow visualization of Wnt as it trafficks through the secretory pathway, defining roles for palmitoylation and glycosylation in controlling Wnt activity and exploring the substrate specificity and regulation of the Wnt-modifying porcupine. Wnts are secreted palmitoylated glycoproteins that are important in embryonic development and human cancers. Here we report a method for imaging the palmitoylated form of Wnt proteins with subcellular resolution using clickable bioorthogonal fatty acids and in situ proximity ligation. Palmitoylated Wnt3a is visualized throughout the secretory pathway and trafficks to multivesicular bodies that act as export sites in secretory cells. We establish that glycosylation is not required for Wnt3a palmitoylation, which is necessary but not sufficient for Wnt3a secretion. Wnt3a is palmitoylated by fatty acids 13–16 carbons in length at Ser209 but not at Cys77, consistent with a slow turnover rate. We find that porcupine (PORCN) itself is palmitoylated, demonstrating what is to our knowledge the first example of palmitoylation of an MBOAT protein, and this modification partially regulates Wnt palmitoylation and signaling. Our data reveal the role of O-palmitoylation in Wnt signaling and suggest another layer of cellular control over PORCN function and Wnt secretion.</description><identifier>ISSN: 1552-4450</identifier><identifier>EISSN: 1552-4469</identifier><identifier>DOI: 10.1038/nchembio.1392</identifier><identifier>PMID: 24292069</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>13 ; 14 ; 631/1647/245 ; 631/80/86 ; 631/92/458 ; 631/92/96 ; 82 ; 96 ; Acyltransferases - metabolism ; Biochemical Engineering ; Biochemistry ; Bioorganic Chemistry ; Cell Biology ; Cellular biology ; Chemistry ; Chemistry/Food Science ; Embryonic growth stage ; Enzymes ; Exosomes - metabolism ; Fatty acids ; Glycoproteins ; Glycosylation ; Humans ; Membrane Proteins - metabolism ; Palmitic Acids - metabolism ; Wnt Proteins - metabolism</subject><ispartof>Nature chemical biology, 2014-01, Vol.10 (1), p.61-68</ispartof><rights>Springer Nature America, Inc. 2013</rights><rights>Copyright Nature Publishing Group Jan 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-82bc49de3426d88365c0c3a152374789ec03e3d1fb01df01d9e71a0108006a093</citedby><cites>FETCH-LOGICAL-c426t-82bc49de3426d88365c0c3a152374789ec03e3d1fb01df01d9e71a0108006a093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nchembio.1392$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nchembio.1392$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24292069$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Xinxin</creatorcontrib><creatorcontrib>Hannoush, Rami N</creatorcontrib><title>Single-cell imaging of Wnt palmitoylation by the acyltransferase porcupine</title><title>Nature chemical biology</title><addtitle>Nat Chem Biol</addtitle><addtitle>Nat Chem Biol</addtitle><description>Clickable fatty acids coupled with in situ proximity ligation allow visualization of Wnt as it trafficks through the secretory pathway, defining roles for palmitoylation and glycosylation in controlling Wnt activity and exploring the substrate specificity and regulation of the Wnt-modifying porcupine. Wnts are secreted palmitoylated glycoproteins that are important in embryonic development and human cancers. Here we report a method for imaging the palmitoylated form of Wnt proteins with subcellular resolution using clickable bioorthogonal fatty acids and in situ proximity ligation. Palmitoylated Wnt3a is visualized throughout the secretory pathway and trafficks to multivesicular bodies that act as export sites in secretory cells. We establish that glycosylation is not required for Wnt3a palmitoylation, which is necessary but not sufficient for Wnt3a secretion. Wnt3a is palmitoylated by fatty acids 13–16 carbons in length at Ser209 but not at Cys77, consistent with a slow turnover rate. We find that porcupine (PORCN) itself is palmitoylated, demonstrating what is to our knowledge the first example of palmitoylation of an MBOAT protein, and this modification partially regulates Wnt palmitoylation and signaling. Our data reveal the role of O-palmitoylation in Wnt signaling and suggest another layer of cellular control over PORCN function and Wnt secretion.</description><subject>13</subject><subject>14</subject><subject>631/1647/245</subject><subject>631/80/86</subject><subject>631/92/458</subject><subject>631/92/96</subject><subject>82</subject><subject>96</subject><subject>Acyltransferases - metabolism</subject><subject>Biochemical Engineering</subject><subject>Biochemistry</subject><subject>Bioorganic Chemistry</subject><subject>Cell Biology</subject><subject>Cellular biology</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>Embryonic growth stage</subject><subject>Enzymes</subject><subject>Exosomes - metabolism</subject><subject>Fatty acids</subject><subject>Glycoproteins</subject><subject>Glycosylation</subject><subject>Humans</subject><subject>Membrane Proteins - metabolism</subject><subject>Palmitic Acids - metabolism</subject><subject>Wnt Proteins - metabolism</subject><issn>1552-4450</issn><issn>1552-4469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNptkM9LwzAUx4Mobk6PXiXgxUtnfrRpepThTwYeVDyWNH3dOtqkJu2h_70Z20TEQ0ge-fB9730QuqRkTgmXt0avoS1qO6c8Y0doSpOERXEssuOfd0Im6Mz7DSFcCCpP0YTFLGNEZFP08labVQORhqbBdatWocS2wp-mx51q2rq3Y6P62hpcjLhfA1Z6bHqnjK_AKQ-4s04PXW3gHJ1UqvFwsb9n6OPh_n3xFC1fH58Xd8tIx0z0kWSFjrMSeKhKKblINNFc0YTxNE5lBppw4CWtCkLLKpwMUqoIJZIQoUjGZ-hml9s5-zWA7_O29tv5lQE7-JyG5UXCeQicoes_6MYOzoTp8uAmJVLElAYq2lHaWe8dVHnnggo35pTkW8n5QXK-lRz4q33qULRQ_tAHqwGY7wAfvswK3K-2_yZ-Ax__iD8</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Gao, Xinxin</creator><creator>Hannoush, Rami N</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20140101</creationdate><title>Single-cell imaging of Wnt palmitoylation by the acyltransferase porcupine</title><author>Gao, Xinxin ; Hannoush, Rami N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-82bc49de3426d88365c0c3a152374789ec03e3d1fb01df01d9e71a0108006a093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>13</topic><topic>14</topic><topic>631/1647/245</topic><topic>631/80/86</topic><topic>631/92/458</topic><topic>631/92/96</topic><topic>82</topic><topic>96</topic><topic>Acyltransferases - metabolism</topic><topic>Biochemical Engineering</topic><topic>Biochemistry</topic><topic>Bioorganic Chemistry</topic><topic>Cell Biology</topic><topic>Cellular biology</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>Embryonic growth stage</topic><topic>Enzymes</topic><topic>Exosomes - metabolism</topic><topic>Fatty acids</topic><topic>Glycoproteins</topic><topic>Glycosylation</topic><topic>Humans</topic><topic>Membrane Proteins - metabolism</topic><topic>Palmitic Acids - metabolism</topic><topic>Wnt Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Xinxin</creatorcontrib><creatorcontrib>Hannoush, Rami N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Xinxin</au><au>Hannoush, Rami N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-cell imaging of Wnt palmitoylation by the acyltransferase porcupine</atitle><jtitle>Nature chemical biology</jtitle><stitle>Nat Chem Biol</stitle><addtitle>Nat Chem Biol</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>10</volume><issue>1</issue><spage>61</spage><epage>68</epage><pages>61-68</pages><issn>1552-4450</issn><eissn>1552-4469</eissn><abstract>Clickable fatty acids coupled with in situ proximity ligation allow visualization of Wnt as it trafficks through the secretory pathway, defining roles for palmitoylation and glycosylation in controlling Wnt activity and exploring the substrate specificity and regulation of the Wnt-modifying porcupine. Wnts are secreted palmitoylated glycoproteins that are important in embryonic development and human cancers. Here we report a method for imaging the palmitoylated form of Wnt proteins with subcellular resolution using clickable bioorthogonal fatty acids and in situ proximity ligation. Palmitoylated Wnt3a is visualized throughout the secretory pathway and trafficks to multivesicular bodies that act as export sites in secretory cells. We establish that glycosylation is not required for Wnt3a palmitoylation, which is necessary but not sufficient for Wnt3a secretion. Wnt3a is palmitoylated by fatty acids 13–16 carbons in length at Ser209 but not at Cys77, consistent with a slow turnover rate. We find that porcupine (PORCN) itself is palmitoylated, demonstrating what is to our knowledge the first example of palmitoylation of an MBOAT protein, and this modification partially regulates Wnt palmitoylation and signaling. Our data reveal the role of O-palmitoylation in Wnt signaling and suggest another layer of cellular control over PORCN function and Wnt secretion.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>24292069</pmid><doi>10.1038/nchembio.1392</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1552-4450
ispartof Nature chemical biology, 2014-01, Vol.10 (1), p.61-68
issn 1552-4450
1552-4469
language eng
recordid cdi_proquest_miscellaneous_1469653352
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 13
14
631/1647/245
631/80/86
631/92/458
631/92/96
82
96
Acyltransferases - metabolism
Biochemical Engineering
Biochemistry
Bioorganic Chemistry
Cell Biology
Cellular biology
Chemistry
Chemistry/Food Science
Embryonic growth stage
Enzymes
Exosomes - metabolism
Fatty acids
Glycoproteins
Glycosylation
Humans
Membrane Proteins - metabolism
Palmitic Acids - metabolism
Wnt Proteins - metabolism
title Single-cell imaging of Wnt palmitoylation by the acyltransferase porcupine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-cell%20imaging%20of%20Wnt%20palmitoylation%20by%20the%20acyltransferase%20porcupine&rft.jtitle=Nature%20chemical%20biology&rft.au=Gao,%20Xinxin&rft.date=2014-01-01&rft.volume=10&rft.issue=1&rft.spage=61&rft.epage=68&rft.pages=61-68&rft.issn=1552-4450&rft.eissn=1552-4469&rft_id=info:doi/10.1038/nchembio.1392&rft_dat=%3Cproquest_cross%3E3415447381%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1557086411&rft_id=info:pmid/24292069&rfr_iscdi=true