Local and Average Structure in Zinc Cyanide: Toward an Understanding of the Atomistic Origin of Negative Thermal Expansion

Neutron diffraction at 11.4 and 295 K and solid-state 67Zn NMR are used to determine both the local and the average structures in the disordered, negative thermal expansion (NTE) material, Zn(CN)2. Solid-state NMR not only confirms that there is head-to-tail disorder of the CN groups present in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2013-11, Vol.135 (44), p.16478-16489
Hauptverfasser: Hibble, Simon J, Chippindale, Ann M, Marelli, Elena, Kroeker, Scott, Michaelis, Vladimir K, Greer, Brandon J, Aguiar, Pedro M, Bilbé, Edward J, Barney, Emma R, Hannon, Alex C
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16489
container_issue 44
container_start_page 16478
container_title Journal of the American Chemical Society
container_volume 135
creator Hibble, Simon J
Chippindale, Ann M
Marelli, Elena
Kroeker, Scott
Michaelis, Vladimir K
Greer, Brandon J
Aguiar, Pedro M
Bilbé, Edward J
Barney, Emma R
Hannon, Alex C
description Neutron diffraction at 11.4 and 295 K and solid-state 67Zn NMR are used to determine both the local and the average structures in the disordered, negative thermal expansion (NTE) material, Zn(CN)2. Solid-state NMR not only confirms that there is head-to-tail disorder of the CN groups present in the solid, but yields information about the relative abundances of the different Zn(CN)4–n (NC) n tetrahedral species, which do not follow a simple binomial distribution. The Zn(CN)4 and Zn(NC)4 species occur with much lower probabilities than are predicted by binomial theory, supporting the conclusion that they are of higher energy than the other local arrangements. The lowest energy arrangement is Zn(CN)2(NC)2. The use of total neutron diffraction at 11.4 K, with analysis of both the Bragg diffraction and the derived total correlation function, yields the first experimental determination of the individual Zn–N and Zn–C bond lengths as 1.969(2) and 2.030(2) Å, respectively. The very small difference in bond lengths, of ∼0.06 Å, means that it is impossible to obtain these bond lengths using Bragg diffraction in isolation. Total neutron diffraction also provides information on both the average and the local atomic displacements responsible for NTE in Zn(CN)2. The principal motions giving rise to NTE are shown to be those in which the carbon and nitrogen atoms within individual Zn–CN–Zn linkages are displaced to the same side of the Zn···Zn axis. Displacements of the carbon and nitrogen atoms to opposite sides of the Zn···Zn axis, suggested previously in X-ray studies as being responsible for NTE behavior, in fact make negligible contributions at temperatures up to 295 K.
doi_str_mv 10.1021/ja406848s
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1469645930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1469645930</sourcerecordid><originalsourceid>FETCH-LOGICAL-a381t-9ea79ee49dc6a4f28d7bd32bc03424776317881c4847c68e99fb9b520f9d5a7f3</originalsourceid><addsrcrecordid>eNptkEFPGzEQha0KVELaQ_8A8gWpPSzYXq_X7i2KUlopggPh0svKa88GR4md2l5a-PW4CnDiNJrR997MPIS-UHJBCaOXG82JkFymD2hCG0aqhjJxhCaEEFa1UtQn6DSlTWk5k_QjOmGcKEJFM0FPy2D0Fmtv8ewBol4Dvs1xNHmMgJ3Hv503eP6ovbPwHa_CXx1tofGdtxBTLjrn1zgMON8DnuWwcyk7g2-iWxd1mV_DWmf3AHh1D3FXVi3-7bVPLvhP6HjQ2wSfX-oU3f1YrOY_q-XN1a_5bFnpWtJcKdCtAuDKGqH5wKRte1uz3pCaM962oqatlNRwyVsjJCg19KovKQzKNrod6in6evDdx_BnhJS7cqSB7VZ7CGPqKBdK8EbVpKDfDqiJIaUIQ7ePbqfjY0dJ9z_q7i3qwp692I79Duwb-ZptAc4PgDap24Qx-vLlO0bPw8CFkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1469645930</pqid></control><display><type>article</type><title>Local and Average Structure in Zinc Cyanide: Toward an Understanding of the Atomistic Origin of Negative Thermal Expansion</title><source>American Chemical Society Journals</source><creator>Hibble, Simon J ; Chippindale, Ann M ; Marelli, Elena ; Kroeker, Scott ; Michaelis, Vladimir K ; Greer, Brandon J ; Aguiar, Pedro M ; Bilbé, Edward J ; Barney, Emma R ; Hannon, Alex C</creator><creatorcontrib>Hibble, Simon J ; Chippindale, Ann M ; Marelli, Elena ; Kroeker, Scott ; Michaelis, Vladimir K ; Greer, Brandon J ; Aguiar, Pedro M ; Bilbé, Edward J ; Barney, Emma R ; Hannon, Alex C</creatorcontrib><description>Neutron diffraction at 11.4 and 295 K and solid-state 67Zn NMR are used to determine both the local and the average structures in the disordered, negative thermal expansion (NTE) material, Zn(CN)2. Solid-state NMR not only confirms that there is head-to-tail disorder of the CN groups present in the solid, but yields information about the relative abundances of the different Zn(CN)4–n (NC) n tetrahedral species, which do not follow a simple binomial distribution. The Zn(CN)4 and Zn(NC)4 species occur with much lower probabilities than are predicted by binomial theory, supporting the conclusion that they are of higher energy than the other local arrangements. The lowest energy arrangement is Zn(CN)2(NC)2. The use of total neutron diffraction at 11.4 K, with analysis of both the Bragg diffraction and the derived total correlation function, yields the first experimental determination of the individual Zn–N and Zn–C bond lengths as 1.969(2) and 2.030(2) Å, respectively. The very small difference in bond lengths, of ∼0.06 Å, means that it is impossible to obtain these bond lengths using Bragg diffraction in isolation. Total neutron diffraction also provides information on both the average and the local atomic displacements responsible for NTE in Zn(CN)2. The principal motions giving rise to NTE are shown to be those in which the carbon and nitrogen atoms within individual Zn–CN–Zn linkages are displaced to the same side of the Zn···Zn axis. Displacements of the carbon and nitrogen atoms to opposite sides of the Zn···Zn axis, suggested previously in X-ray studies as being responsible for NTE behavior, in fact make negligible contributions at temperatures up to 295 K.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja406848s</identifier><identifier>PMID: 24090165</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2013-11, Vol.135 (44), p.16478-16489</ispartof><rights>Copyright © 2013 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a381t-9ea79ee49dc6a4f28d7bd32bc03424776317881c4847c68e99fb9b520f9d5a7f3</citedby><cites>FETCH-LOGICAL-a381t-9ea79ee49dc6a4f28d7bd32bc03424776317881c4847c68e99fb9b520f9d5a7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ja406848s$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ja406848s$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24090165$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hibble, Simon J</creatorcontrib><creatorcontrib>Chippindale, Ann M</creatorcontrib><creatorcontrib>Marelli, Elena</creatorcontrib><creatorcontrib>Kroeker, Scott</creatorcontrib><creatorcontrib>Michaelis, Vladimir K</creatorcontrib><creatorcontrib>Greer, Brandon J</creatorcontrib><creatorcontrib>Aguiar, Pedro M</creatorcontrib><creatorcontrib>Bilbé, Edward J</creatorcontrib><creatorcontrib>Barney, Emma R</creatorcontrib><creatorcontrib>Hannon, Alex C</creatorcontrib><title>Local and Average Structure in Zinc Cyanide: Toward an Understanding of the Atomistic Origin of Negative Thermal Expansion</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Neutron diffraction at 11.4 and 295 K and solid-state 67Zn NMR are used to determine both the local and the average structures in the disordered, negative thermal expansion (NTE) material, Zn(CN)2. Solid-state NMR not only confirms that there is head-to-tail disorder of the CN groups present in the solid, but yields information about the relative abundances of the different Zn(CN)4–n (NC) n tetrahedral species, which do not follow a simple binomial distribution. The Zn(CN)4 and Zn(NC)4 species occur with much lower probabilities than are predicted by binomial theory, supporting the conclusion that they are of higher energy than the other local arrangements. The lowest energy arrangement is Zn(CN)2(NC)2. The use of total neutron diffraction at 11.4 K, with analysis of both the Bragg diffraction and the derived total correlation function, yields the first experimental determination of the individual Zn–N and Zn–C bond lengths as 1.969(2) and 2.030(2) Å, respectively. The very small difference in bond lengths, of ∼0.06 Å, means that it is impossible to obtain these bond lengths using Bragg diffraction in isolation. Total neutron diffraction also provides information on both the average and the local atomic displacements responsible for NTE in Zn(CN)2. The principal motions giving rise to NTE are shown to be those in which the carbon and nitrogen atoms within individual Zn–CN–Zn linkages are displaced to the same side of the Zn···Zn axis. Displacements of the carbon and nitrogen atoms to opposite sides of the Zn···Zn axis, suggested previously in X-ray studies as being responsible for NTE behavior, in fact make negligible contributions at temperatures up to 295 K.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNptkEFPGzEQha0KVELaQ_8A8gWpPSzYXq_X7i2KUlopggPh0svKa88GR4md2l5a-PW4CnDiNJrR997MPIS-UHJBCaOXG82JkFymD2hCG0aqhjJxhCaEEFa1UtQn6DSlTWk5k_QjOmGcKEJFM0FPy2D0Fmtv8ewBol4Dvs1xNHmMgJ3Hv503eP6ovbPwHa_CXx1tofGdtxBTLjrn1zgMON8DnuWwcyk7g2-iWxd1mV_DWmf3AHh1D3FXVi3-7bVPLvhP6HjQ2wSfX-oU3f1YrOY_q-XN1a_5bFnpWtJcKdCtAuDKGqH5wKRte1uz3pCaM962oqatlNRwyVsjJCg19KovKQzKNrod6in6evDdx_BnhJS7cqSB7VZ7CGPqKBdK8EbVpKDfDqiJIaUIQ7ePbqfjY0dJ9z_q7i3qwp692I79Duwb-ZptAc4PgDap24Qx-vLlO0bPw8CFkg</recordid><startdate>20131106</startdate><enddate>20131106</enddate><creator>Hibble, Simon J</creator><creator>Chippindale, Ann M</creator><creator>Marelli, Elena</creator><creator>Kroeker, Scott</creator><creator>Michaelis, Vladimir K</creator><creator>Greer, Brandon J</creator><creator>Aguiar, Pedro M</creator><creator>Bilbé, Edward J</creator><creator>Barney, Emma R</creator><creator>Hannon, Alex C</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20131106</creationdate><title>Local and Average Structure in Zinc Cyanide: Toward an Understanding of the Atomistic Origin of Negative Thermal Expansion</title><author>Hibble, Simon J ; Chippindale, Ann M ; Marelli, Elena ; Kroeker, Scott ; Michaelis, Vladimir K ; Greer, Brandon J ; Aguiar, Pedro M ; Bilbé, Edward J ; Barney, Emma R ; Hannon, Alex C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a381t-9ea79ee49dc6a4f28d7bd32bc03424776317881c4847c68e99fb9b520f9d5a7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hibble, Simon J</creatorcontrib><creatorcontrib>Chippindale, Ann M</creatorcontrib><creatorcontrib>Marelli, Elena</creatorcontrib><creatorcontrib>Kroeker, Scott</creatorcontrib><creatorcontrib>Michaelis, Vladimir K</creatorcontrib><creatorcontrib>Greer, Brandon J</creatorcontrib><creatorcontrib>Aguiar, Pedro M</creatorcontrib><creatorcontrib>Bilbé, Edward J</creatorcontrib><creatorcontrib>Barney, Emma R</creatorcontrib><creatorcontrib>Hannon, Alex C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hibble, Simon J</au><au>Chippindale, Ann M</au><au>Marelli, Elena</au><au>Kroeker, Scott</au><au>Michaelis, Vladimir K</au><au>Greer, Brandon J</au><au>Aguiar, Pedro M</au><au>Bilbé, Edward J</au><au>Barney, Emma R</au><au>Hannon, Alex C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local and Average Structure in Zinc Cyanide: Toward an Understanding of the Atomistic Origin of Negative Thermal Expansion</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2013-11-06</date><risdate>2013</risdate><volume>135</volume><issue>44</issue><spage>16478</spage><epage>16489</epage><pages>16478-16489</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Neutron diffraction at 11.4 and 295 K and solid-state 67Zn NMR are used to determine both the local and the average structures in the disordered, negative thermal expansion (NTE) material, Zn(CN)2. Solid-state NMR not only confirms that there is head-to-tail disorder of the CN groups present in the solid, but yields information about the relative abundances of the different Zn(CN)4–n (NC) n tetrahedral species, which do not follow a simple binomial distribution. The Zn(CN)4 and Zn(NC)4 species occur with much lower probabilities than are predicted by binomial theory, supporting the conclusion that they are of higher energy than the other local arrangements. The lowest energy arrangement is Zn(CN)2(NC)2. The use of total neutron diffraction at 11.4 K, with analysis of both the Bragg diffraction and the derived total correlation function, yields the first experimental determination of the individual Zn–N and Zn–C bond lengths as 1.969(2) and 2.030(2) Å, respectively. The very small difference in bond lengths, of ∼0.06 Å, means that it is impossible to obtain these bond lengths using Bragg diffraction in isolation. Total neutron diffraction also provides information on both the average and the local atomic displacements responsible for NTE in Zn(CN)2. The principal motions giving rise to NTE are shown to be those in which the carbon and nitrogen atoms within individual Zn–CN–Zn linkages are displaced to the same side of the Zn···Zn axis. Displacements of the carbon and nitrogen atoms to opposite sides of the Zn···Zn axis, suggested previously in X-ray studies as being responsible for NTE behavior, in fact make negligible contributions at temperatures up to 295 K.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>24090165</pmid><doi>10.1021/ja406848s</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2013-11, Vol.135 (44), p.16478-16489
issn 0002-7863
1520-5126
language eng
recordid cdi_proquest_miscellaneous_1469645930
source American Chemical Society Journals
title Local and Average Structure in Zinc Cyanide: Toward an Understanding of the Atomistic Origin of Negative Thermal Expansion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A40%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20and%20Average%20Structure%20in%20Zinc%20Cyanide:%20Toward%20an%20Understanding%20of%20the%20Atomistic%20Origin%20of%20Negative%20Thermal%20Expansion&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Hibble,%20Simon%20J&rft.date=2013-11-06&rft.volume=135&rft.issue=44&rft.spage=16478&rft.epage=16489&rft.pages=16478-16489&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja406848s&rft_dat=%3Cproquest_cross%3E1469645930%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1469645930&rft_id=info:pmid/24090165&rfr_iscdi=true