Application of regularised optimal fingerprinting to attribution. Part II: application to global near-surface temperature
Attribution of global near-surface temperature changes is revisited using simulations from the coupled model intercomparison project 5 and methodological improvements from the regularised optimal fingerprinting approach. The analysis of global mean temperature shows that changes can be robustly dete...
Gespeichert in:
Veröffentlicht in: | Climate dynamics 2013-12, Vol.41 (11-12), p.2837-2853 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2853 |
---|---|
container_issue | 11-12 |
container_start_page | 2837 |
container_title | Climate dynamics |
container_volume | 41 |
creator | Ribes, Aurélien Terray, Laurent |
description | Attribution of global near-surface temperature changes is revisited using simulations from the coupled model intercomparison project 5 and methodological improvements from the regularised optimal fingerprinting approach. The analysis of global mean temperature shows that changes can be robustly detected and attributed to anthropogenic influence. However, the differences between results from individual models and observations are found to be larger than the simulated internal variability in several cases. Discrimination between greenhouse gases and other anthropogenic forcings, based on the global mean only, is more difficult due to collinearity of temporal response patterns. Using spatio-temporal data provides less robust conclusions with respect to detection and attribution, as the results tend to deteriorate as the spatial resolution increases. More importantly, some inconsistencies between individual models and observations are found in this case. Such behaviour is not observed in a perfect model framework, where pseudo-observations and the expected response patterns are provided by the same model. However, using response patterns from a model other than the one used for pseudo-observations may lead to the same behaviour as real observations. Our results suggest that additional sources of uncertainty, such as modeling uncertainty or observational uncertainty, should not be neglected in detection and attribution. |
doi_str_mv | 10.1007/s00382-013-1736-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1468382246</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A353212367</galeid><sourcerecordid>A353212367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c483t-3162fa9e928617d6dbb6dce09ec12d3a86d84e614daea6b1ad52428ea7fcc90d3</originalsourceid><addsrcrecordid>eNp1klur1DAUhYMoOI7-AN8KouhDx1zatPVtOHgZOKB4eQ676W5PDmlTkxQ8_97UHmRGkDwkhG9t9l57EfKc0QOjtHobKBU1zykTOauEzOUDsmOFSD91UzwkO9oImldlVT4mT0K4pZQVsuI7cnecZ2s0ROOmzPWZx2Gx4E3ALnNzNCPYrDfTgH72ZorplUWXQYzetMsqOmRfwMfsdHqXwVmpBA3WtUk9Ifg8LL4HjVnEcUYPcfH4lDzqwQZ8dn_vyY8P779ffcqvP388XR2vc13UIuaCSd5Dgw2vJas62bWt7DTSBjXjnYBadnWBkhUdIMiWQVfygtcIVa91QzuxJ6-3urN3PxcMUY0maLQWJnRLUMmIOlnHC5nQF_-gt27xU-ouUWWTWqmSuXty2KgBLCoz9S560Ol0OBrtJuxN-j-KUnDGhVwFby4EiYn4Kw6whKBO375esq_O2BsEG2-Cs3-sDpcg20DtXQgee5UWNIK_U4yqNRJqi4RKkVBrJNQ638v7-SBosL2HSZvwV8irRlZNSRPHNy6sS0-7P_Phv8V_Aw6Jxgs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1459316717</pqid></control><display><type>article</type><title>Application of regularised optimal fingerprinting to attribution. Part II: application to global near-surface temperature</title><source>SpringerLink Journals</source><creator>Ribes, Aurélien ; Terray, Laurent</creator><creatorcontrib>Ribes, Aurélien ; Terray, Laurent</creatorcontrib><description>Attribution of global near-surface temperature changes is revisited using simulations from the coupled model intercomparison project 5 and methodological improvements from the regularised optimal fingerprinting approach. The analysis of global mean temperature shows that changes can be robustly detected and attributed to anthropogenic influence. However, the differences between results from individual models and observations are found to be larger than the simulated internal variability in several cases. Discrimination between greenhouse gases and other anthropogenic forcings, based on the global mean only, is more difficult due to collinearity of temporal response patterns. Using spatio-temporal data provides less robust conclusions with respect to detection and attribution, as the results tend to deteriorate as the spatial resolution increases. More importantly, some inconsistencies between individual models and observations are found in this case. Such behaviour is not observed in a perfect model framework, where pseudo-observations and the expected response patterns are provided by the same model. However, using response patterns from a model other than the one used for pseudo-observations may lead to the same behaviour as real observations. Our results suggest that additional sources of uncertainty, such as modeling uncertainty or observational uncertainty, should not be neglected in detection and attribution.</description><identifier>ISSN: 0930-7575</identifier><identifier>EISSN: 1432-0894</identifier><identifier>DOI: 10.1007/s00382-013-1736-6</identifier><identifier>CODEN: CLDYEM</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anthropogenic factors ; Atmospheric circulation ; Atmospheric temperature ; Climate change ; Climatology ; Climatology. Bioclimatology. Climate change ; Earth and Environmental Science ; Earth Sciences ; Earth, ocean, space ; Environmental aspects ; Exact sciences and technology ; External geophysics ; General circulation models ; Geophysics. Techniques, methods, instrumentation and models ; Geophysics/Geodesy ; Global temperatures ; Greenhouse gases ; Meteorology ; Oceanography ; Simulation ; Statistical analysis ; Surface temperature</subject><ispartof>Climate dynamics, 2013-12, Vol.41 (11-12), p.2837-2853</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>2015 INIST-CNRS</rights><rights>COPYRIGHT 2013 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c483t-3162fa9e928617d6dbb6dce09ec12d3a86d84e614daea6b1ad52428ea7fcc90d3</citedby><cites>FETCH-LOGICAL-c483t-3162fa9e928617d6dbb6dce09ec12d3a86d84e614daea6b1ad52428ea7fcc90d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00382-013-1736-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00382-013-1736-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27967950$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ribes, Aurélien</creatorcontrib><creatorcontrib>Terray, Laurent</creatorcontrib><title>Application of regularised optimal fingerprinting to attribution. Part II: application to global near-surface temperature</title><title>Climate dynamics</title><addtitle>Clim Dyn</addtitle><description>Attribution of global near-surface temperature changes is revisited using simulations from the coupled model intercomparison project 5 and methodological improvements from the regularised optimal fingerprinting approach. The analysis of global mean temperature shows that changes can be robustly detected and attributed to anthropogenic influence. However, the differences between results from individual models and observations are found to be larger than the simulated internal variability in several cases. Discrimination between greenhouse gases and other anthropogenic forcings, based on the global mean only, is more difficult due to collinearity of temporal response patterns. Using spatio-temporal data provides less robust conclusions with respect to detection and attribution, as the results tend to deteriorate as the spatial resolution increases. More importantly, some inconsistencies between individual models and observations are found in this case. Such behaviour is not observed in a perfect model framework, where pseudo-observations and the expected response patterns are provided by the same model. However, using response patterns from a model other than the one used for pseudo-observations may lead to the same behaviour as real observations. Our results suggest that additional sources of uncertainty, such as modeling uncertainty or observational uncertainty, should not be neglected in detection and attribution.</description><subject>Anthropogenic factors</subject><subject>Atmospheric circulation</subject><subject>Atmospheric temperature</subject><subject>Climate change</subject><subject>Climatology</subject><subject>Climatology. Bioclimatology. Climate change</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Environmental aspects</subject><subject>Exact sciences and technology</subject><subject>External geophysics</subject><subject>General circulation models</subject><subject>Geophysics. Techniques, methods, instrumentation and models</subject><subject>Geophysics/Geodesy</subject><subject>Global temperatures</subject><subject>Greenhouse gases</subject><subject>Meteorology</subject><subject>Oceanography</subject><subject>Simulation</subject><subject>Statistical analysis</subject><subject>Surface temperature</subject><issn>0930-7575</issn><issn>1432-0894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1klur1DAUhYMoOI7-AN8KouhDx1zatPVtOHgZOKB4eQ676W5PDmlTkxQ8_97UHmRGkDwkhG9t9l57EfKc0QOjtHobKBU1zykTOauEzOUDsmOFSD91UzwkO9oImldlVT4mT0K4pZQVsuI7cnecZ2s0ROOmzPWZx2Gx4E3ALnNzNCPYrDfTgH72ZorplUWXQYzetMsqOmRfwMfsdHqXwVmpBA3WtUk9Ifg8LL4HjVnEcUYPcfH4lDzqwQZ8dn_vyY8P779ffcqvP388XR2vc13UIuaCSd5Dgw2vJas62bWt7DTSBjXjnYBadnWBkhUdIMiWQVfygtcIVa91QzuxJ6-3urN3PxcMUY0maLQWJnRLUMmIOlnHC5nQF_-gt27xU-ouUWWTWqmSuXty2KgBLCoz9S560Ol0OBrtJuxN-j-KUnDGhVwFby4EiYn4Kw6whKBO375esq_O2BsEG2-Cs3-sDpcg20DtXQgee5UWNIK_U4yqNRJqi4RKkVBrJNQ638v7-SBosL2HSZvwV8irRlZNSRPHNy6sS0-7P_Phv8V_Aw6Jxgs</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Ribes, Aurélien</creator><creator>Terray, Laurent</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M1Q</scope><scope>M2P</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20131201</creationdate><title>Application of regularised optimal fingerprinting to attribution. Part II: application to global near-surface temperature</title><author>Ribes, Aurélien ; Terray, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c483t-3162fa9e928617d6dbb6dce09ec12d3a86d84e614daea6b1ad52428ea7fcc90d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anthropogenic factors</topic><topic>Atmospheric circulation</topic><topic>Atmospheric temperature</topic><topic>Climate change</topic><topic>Climatology</topic><topic>Climatology. Bioclimatology. Climate change</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Environmental aspects</topic><topic>Exact sciences and technology</topic><topic>External geophysics</topic><topic>General circulation models</topic><topic>Geophysics. Techniques, methods, instrumentation and models</topic><topic>Geophysics/Geodesy</topic><topic>Global temperatures</topic><topic>Greenhouse gases</topic><topic>Meteorology</topic><topic>Oceanography</topic><topic>Simulation</topic><topic>Statistical analysis</topic><topic>Surface temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ribes, Aurélien</creatorcontrib><creatorcontrib>Terray, Laurent</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Military Database</collection><collection>Science Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Climate dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ribes, Aurélien</au><au>Terray, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of regularised optimal fingerprinting to attribution. Part II: application to global near-surface temperature</atitle><jtitle>Climate dynamics</jtitle><stitle>Clim Dyn</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>41</volume><issue>11-12</issue><spage>2837</spage><epage>2853</epage><pages>2837-2853</pages><issn>0930-7575</issn><eissn>1432-0894</eissn><coden>CLDYEM</coden><abstract>Attribution of global near-surface temperature changes is revisited using simulations from the coupled model intercomparison project 5 and methodological improvements from the regularised optimal fingerprinting approach. The analysis of global mean temperature shows that changes can be robustly detected and attributed to anthropogenic influence. However, the differences between results from individual models and observations are found to be larger than the simulated internal variability in several cases. Discrimination between greenhouse gases and other anthropogenic forcings, based on the global mean only, is more difficult due to collinearity of temporal response patterns. Using spatio-temporal data provides less robust conclusions with respect to detection and attribution, as the results tend to deteriorate as the spatial resolution increases. More importantly, some inconsistencies between individual models and observations are found in this case. Such behaviour is not observed in a perfect model framework, where pseudo-observations and the expected response patterns are provided by the same model. However, using response patterns from a model other than the one used for pseudo-observations may lead to the same behaviour as real observations. Our results suggest that additional sources of uncertainty, such as modeling uncertainty or observational uncertainty, should not be neglected in detection and attribution.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00382-013-1736-6</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0930-7575 |
ispartof | Climate dynamics, 2013-12, Vol.41 (11-12), p.2837-2853 |
issn | 0930-7575 1432-0894 |
language | eng |
recordid | cdi_proquest_miscellaneous_1468382246 |
source | SpringerLink Journals |
subjects | Anthropogenic factors Atmospheric circulation Atmospheric temperature Climate change Climatology Climatology. Bioclimatology. Climate change Earth and Environmental Science Earth Sciences Earth, ocean, space Environmental aspects Exact sciences and technology External geophysics General circulation models Geophysics. Techniques, methods, instrumentation and models Geophysics/Geodesy Global temperatures Greenhouse gases Meteorology Oceanography Simulation Statistical analysis Surface temperature |
title | Application of regularised optimal fingerprinting to attribution. Part II: application to global near-surface temperature |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T03%3A20%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20regularised%20optimal%20fingerprinting%20to%20attribution.%20Part%20II:%20application%20to%20global%20near-surface%20temperature&rft.jtitle=Climate%20dynamics&rft.au=Ribes,%20Aur%C3%A9lien&rft.date=2013-12-01&rft.volume=41&rft.issue=11-12&rft.spage=2837&rft.epage=2853&rft.pages=2837-2853&rft.issn=0930-7575&rft.eissn=1432-0894&rft.coden=CLDYEM&rft_id=info:doi/10.1007/s00382-013-1736-6&rft_dat=%3Cgale_proqu%3EA353212367%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1459316717&rft_id=info:pmid/&rft_galeid=A353212367&rfr_iscdi=true |