Pili contribute to biofilm formation in vitro in Mycobacterium tuberculosis

Organized bacterial communities, or biofilms, provide an important reservoir for persistent cells that are inaccessible or tolerant to antibiotics. Curli pili are cell-surface structures produced by certain bacteria and have been implicated in biofilm formation in these species. In order to determin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Antonie van Leeuwenhoek 2013-11, Vol.104 (5), p.725-735
Hauptverfasser: Ramsugit, Saiyur, Guma, Sinenhlanhla, Pillay, Balakrishna, Jain, Paras, Larsen, Michelle H., Danaviah, Siva, Pillay, Manormoney
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 735
container_issue 5
container_start_page 725
container_title Antonie van Leeuwenhoek
container_volume 104
creator Ramsugit, Saiyur
Guma, Sinenhlanhla
Pillay, Balakrishna
Jain, Paras
Larsen, Michelle H.
Danaviah, Siva
Pillay, Manormoney
description Organized bacterial communities, or biofilms, provide an important reservoir for persistent cells that are inaccessible or tolerant to antibiotics. Curli pili are cell-surface structures produced by certain bacteria and have been implicated in biofilm formation in these species. In order to determine whether these structures, which were suggested to be encoded by the Rv3312A ( mtp ) gene, have a similar role in Mycobacterium tuberculosis , we generated a Δ mtp mutant and a mtp -complemented strain of a clinical isolate of M. tuberculosis and analyzed these strains for their ability to produce pili in comparison to the wild-type strain. Phenotypic analysis by transmission electron microscopy proved the essentiality of mtp for piliation in M. tuberculosis . We then compared biofilm formation of the derived strains in detergent-free Sauton’s media. Biofilm mass was quantified spectrophotometrically using crystal violet. Furthermore, we examined mtp gene expression by quantitative real-time PCR in wild-type cells grown under biofilm versus planktonic growth conditions. We found a 68.4 % reduction in biofilm mass in the mutant compared to the wild-type strain ( P  = 0.002). Complementation of the mutant resulted in a restoration of the wild-type biofilm phenotype ( P  = 0.022). We, however, found no significant difference between mtp expression in cells of the biofilm to those growing planktonically. Our findings highlight a crucial, but non-specific, role of pili in the biofilm lifestyle of M. tuberculosis and indicate that they may represent an important target for the development of therapeutics to attenuate biofilm formation, thereby potentially reducing persistence.
doi_str_mv 10.1007/s10482-013-9981-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1468379056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3101774351</sourcerecordid><originalsourceid>FETCH-LOGICAL-c471t-302b09750fad6d35f6d7848af94b28c55471ef8388490b32d3c3eef40dc8e143</originalsourceid><addsrcrecordid>eNqNkctKxTAQhoMoerw8gBspuHFTndyaZCniDRVdnH1o00QibaNJKpy3t-WoiCC4mgz58s-ED6FDDKcYQJwlDEySEjAtlZK4rDbQAnNBSlUptYkWAEDLCgTZQbspvUytqqTYRjuEKhCc4AW6e_KdL0wYcvTNmG2RQ9H44HzXFy7Evs4-DIUfinefY5gPDysTmtpkG_3YF3lsbDRjF5JP-2jL1V2yB591Dy2vLpcXN-X94_Xtxfl9aZjAuaRAGlCCg6vbqqXcVa2QTNZOsYZIw_lEWSeplExBQ0lLDbXWMWiNtJjRPXSyjn2N4W20KeveJ2O7rh5sGJPGrJJUKODVP1BGGaacqgk9_oW-hDEO0z9minBFKZ8pvKZMDClF6_Rr9H0dVxqDnp3otRM9OdGzEz0vcfSZPDa9bb9ffEmYALIG0nQ1PNv4Y_SfqR9e95XH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442593359</pqid></control><display><type>article</type><title>Pili contribute to biofilm formation in vitro in Mycobacterium tuberculosis</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ramsugit, Saiyur ; Guma, Sinenhlanhla ; Pillay, Balakrishna ; Jain, Paras ; Larsen, Michelle H. ; Danaviah, Siva ; Pillay, Manormoney</creator><creatorcontrib>Ramsugit, Saiyur ; Guma, Sinenhlanhla ; Pillay, Balakrishna ; Jain, Paras ; Larsen, Michelle H. ; Danaviah, Siva ; Pillay, Manormoney</creatorcontrib><description>Organized bacterial communities, or biofilms, provide an important reservoir for persistent cells that are inaccessible or tolerant to antibiotics. Curli pili are cell-surface structures produced by certain bacteria and have been implicated in biofilm formation in these species. In order to determine whether these structures, which were suggested to be encoded by the Rv3312A ( mtp ) gene, have a similar role in Mycobacterium tuberculosis , we generated a Δ mtp mutant and a mtp -complemented strain of a clinical isolate of M. tuberculosis and analyzed these strains for their ability to produce pili in comparison to the wild-type strain. Phenotypic analysis by transmission electron microscopy proved the essentiality of mtp for piliation in M. tuberculosis . We then compared biofilm formation of the derived strains in detergent-free Sauton’s media. Biofilm mass was quantified spectrophotometrically using crystal violet. Furthermore, we examined mtp gene expression by quantitative real-time PCR in wild-type cells grown under biofilm versus planktonic growth conditions. We found a 68.4 % reduction in biofilm mass in the mutant compared to the wild-type strain ( P  = 0.002). Complementation of the mutant resulted in a restoration of the wild-type biofilm phenotype ( P  = 0.022). We, however, found no significant difference between mtp expression in cells of the biofilm to those growing planktonically. Our findings highlight a crucial, but non-specific, role of pili in the biofilm lifestyle of M. tuberculosis and indicate that they may represent an important target for the development of therapeutics to attenuate biofilm formation, thereby potentially reducing persistence.</description><identifier>ISSN: 0003-6072</identifier><identifier>EISSN: 1572-9699</identifier><identifier>DOI: 10.1007/s10482-013-9981-6</identifier><identifier>PMID: 23907521</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Antibiotics ; Bacteria ; Bacterial Proteins - genetics ; Biofilms ; Biofilms - growth &amp; development ; Biomedical and Life Sciences ; Fimbriae, Bacterial - genetics ; Fimbriae, Bacterial - physiology ; Fimbriae, Bacterial - ultrastructure ; Gene Deletion ; Gene Expression Profiling ; Genetic Complementation Test ; Gentian Violet - metabolism ; Growth conditions ; Life Sciences ; Medical Microbiology ; Microbiology ; Microscopy, Electron, Transmission ; Mycobacterium tuberculosis ; Mycobacterium tuberculosis - genetics ; Mycobacterium tuberculosis - physiology ; Mycobacterium tuberculosis - ultrastructure ; Original Paper ; Plant Sciences ; Real-Time Polymerase Chain Reaction ; Soil Science &amp; Conservation ; Staining and Labeling ; Tuberculosis</subject><ispartof>Antonie van Leeuwenhoek, 2013-11, Vol.104 (5), p.725-735</ispartof><rights>Springer Science+Business Media Dordrecht 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c471t-302b09750fad6d35f6d7848af94b28c55471ef8388490b32d3c3eef40dc8e143</citedby><cites>FETCH-LOGICAL-c471t-302b09750fad6d35f6d7848af94b28c55471ef8388490b32d3c3eef40dc8e143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10482-013-9981-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10482-013-9981-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23907521$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ramsugit, Saiyur</creatorcontrib><creatorcontrib>Guma, Sinenhlanhla</creatorcontrib><creatorcontrib>Pillay, Balakrishna</creatorcontrib><creatorcontrib>Jain, Paras</creatorcontrib><creatorcontrib>Larsen, Michelle H.</creatorcontrib><creatorcontrib>Danaviah, Siva</creatorcontrib><creatorcontrib>Pillay, Manormoney</creatorcontrib><title>Pili contribute to biofilm formation in vitro in Mycobacterium tuberculosis</title><title>Antonie van Leeuwenhoek</title><addtitle>Antonie van Leeuwenhoek</addtitle><addtitle>Antonie Van Leeuwenhoek</addtitle><description>Organized bacterial communities, or biofilms, provide an important reservoir for persistent cells that are inaccessible or tolerant to antibiotics. Curli pili are cell-surface structures produced by certain bacteria and have been implicated in biofilm formation in these species. In order to determine whether these structures, which were suggested to be encoded by the Rv3312A ( mtp ) gene, have a similar role in Mycobacterium tuberculosis , we generated a Δ mtp mutant and a mtp -complemented strain of a clinical isolate of M. tuberculosis and analyzed these strains for their ability to produce pili in comparison to the wild-type strain. Phenotypic analysis by transmission electron microscopy proved the essentiality of mtp for piliation in M. tuberculosis . We then compared biofilm formation of the derived strains in detergent-free Sauton’s media. Biofilm mass was quantified spectrophotometrically using crystal violet. Furthermore, we examined mtp gene expression by quantitative real-time PCR in wild-type cells grown under biofilm versus planktonic growth conditions. We found a 68.4 % reduction in biofilm mass in the mutant compared to the wild-type strain ( P  = 0.002). Complementation of the mutant resulted in a restoration of the wild-type biofilm phenotype ( P  = 0.022). We, however, found no significant difference between mtp expression in cells of the biofilm to those growing planktonically. Our findings highlight a crucial, but non-specific, role of pili in the biofilm lifestyle of M. tuberculosis and indicate that they may represent an important target for the development of therapeutics to attenuate biofilm formation, thereby potentially reducing persistence.</description><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Biofilms</subject><subject>Biofilms - growth &amp; development</subject><subject>Biomedical and Life Sciences</subject><subject>Fimbriae, Bacterial - genetics</subject><subject>Fimbriae, Bacterial - physiology</subject><subject>Fimbriae, Bacterial - ultrastructure</subject><subject>Gene Deletion</subject><subject>Gene Expression Profiling</subject><subject>Genetic Complementation Test</subject><subject>Gentian Violet - metabolism</subject><subject>Growth conditions</subject><subject>Life Sciences</subject><subject>Medical Microbiology</subject><subject>Microbiology</subject><subject>Microscopy, Electron, Transmission</subject><subject>Mycobacterium tuberculosis</subject><subject>Mycobacterium tuberculosis - genetics</subject><subject>Mycobacterium tuberculosis - physiology</subject><subject>Mycobacterium tuberculosis - ultrastructure</subject><subject>Original Paper</subject><subject>Plant Sciences</subject><subject>Real-Time Polymerase Chain Reaction</subject><subject>Soil Science &amp; Conservation</subject><subject>Staining and Labeling</subject><subject>Tuberculosis</subject><issn>0003-6072</issn><issn>1572-9699</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkctKxTAQhoMoerw8gBspuHFTndyaZCniDRVdnH1o00QibaNJKpy3t-WoiCC4mgz58s-ED6FDDKcYQJwlDEySEjAtlZK4rDbQAnNBSlUptYkWAEDLCgTZQbspvUytqqTYRjuEKhCc4AW6e_KdL0wYcvTNmG2RQ9H44HzXFy7Evs4-DIUfinefY5gPDysTmtpkG_3YF3lsbDRjF5JP-2jL1V2yB591Dy2vLpcXN-X94_Xtxfl9aZjAuaRAGlCCg6vbqqXcVa2QTNZOsYZIw_lEWSeplExBQ0lLDbXWMWiNtJjRPXSyjn2N4W20KeveJ2O7rh5sGJPGrJJUKODVP1BGGaacqgk9_oW-hDEO0z9minBFKZ8pvKZMDClF6_Rr9H0dVxqDnp3otRM9OdGzEz0vcfSZPDa9bb9ffEmYALIG0nQ1PNv4Y_SfqR9e95XH</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Ramsugit, Saiyur</creator><creator>Guma, Sinenhlanhla</creator><creator>Pillay, Balakrishna</creator><creator>Jain, Paras</creator><creator>Larsen, Michelle H.</creator><creator>Danaviah, Siva</creator><creator>Pillay, Manormoney</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20131101</creationdate><title>Pili contribute to biofilm formation in vitro in Mycobacterium tuberculosis</title><author>Ramsugit, Saiyur ; Guma, Sinenhlanhla ; Pillay, Balakrishna ; Jain, Paras ; Larsen, Michelle H. ; Danaviah, Siva ; Pillay, Manormoney</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c471t-302b09750fad6d35f6d7848af94b28c55471ef8388490b32d3c3eef40dc8e143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Biofilms</topic><topic>Biofilms - growth &amp; development</topic><topic>Biomedical and Life Sciences</topic><topic>Fimbriae, Bacterial - genetics</topic><topic>Fimbriae, Bacterial - physiology</topic><topic>Fimbriae, Bacterial - ultrastructure</topic><topic>Gene Deletion</topic><topic>Gene Expression Profiling</topic><topic>Genetic Complementation Test</topic><topic>Gentian Violet - metabolism</topic><topic>Growth conditions</topic><topic>Life Sciences</topic><topic>Medical Microbiology</topic><topic>Microbiology</topic><topic>Microscopy, Electron, Transmission</topic><topic>Mycobacterium tuberculosis</topic><topic>Mycobacterium tuberculosis - genetics</topic><topic>Mycobacterium tuberculosis - physiology</topic><topic>Mycobacterium tuberculosis - ultrastructure</topic><topic>Original Paper</topic><topic>Plant Sciences</topic><topic>Real-Time Polymerase Chain Reaction</topic><topic>Soil Science &amp; Conservation</topic><topic>Staining and Labeling</topic><topic>Tuberculosis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramsugit, Saiyur</creatorcontrib><creatorcontrib>Guma, Sinenhlanhla</creatorcontrib><creatorcontrib>Pillay, Balakrishna</creatorcontrib><creatorcontrib>Jain, Paras</creatorcontrib><creatorcontrib>Larsen, Michelle H.</creatorcontrib><creatorcontrib>Danaviah, Siva</creatorcontrib><creatorcontrib>Pillay, Manormoney</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Antonie van Leeuwenhoek</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramsugit, Saiyur</au><au>Guma, Sinenhlanhla</au><au>Pillay, Balakrishna</au><au>Jain, Paras</au><au>Larsen, Michelle H.</au><au>Danaviah, Siva</au><au>Pillay, Manormoney</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pili contribute to biofilm formation in vitro in Mycobacterium tuberculosis</atitle><jtitle>Antonie van Leeuwenhoek</jtitle><stitle>Antonie van Leeuwenhoek</stitle><addtitle>Antonie Van Leeuwenhoek</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>104</volume><issue>5</issue><spage>725</spage><epage>735</epage><pages>725-735</pages><issn>0003-6072</issn><eissn>1572-9699</eissn><abstract>Organized bacterial communities, or biofilms, provide an important reservoir for persistent cells that are inaccessible or tolerant to antibiotics. Curli pili are cell-surface structures produced by certain bacteria and have been implicated in biofilm formation in these species. In order to determine whether these structures, which were suggested to be encoded by the Rv3312A ( mtp ) gene, have a similar role in Mycobacterium tuberculosis , we generated a Δ mtp mutant and a mtp -complemented strain of a clinical isolate of M. tuberculosis and analyzed these strains for their ability to produce pili in comparison to the wild-type strain. Phenotypic analysis by transmission electron microscopy proved the essentiality of mtp for piliation in M. tuberculosis . We then compared biofilm formation of the derived strains in detergent-free Sauton’s media. Biofilm mass was quantified spectrophotometrically using crystal violet. Furthermore, we examined mtp gene expression by quantitative real-time PCR in wild-type cells grown under biofilm versus planktonic growth conditions. We found a 68.4 % reduction in biofilm mass in the mutant compared to the wild-type strain ( P  = 0.002). Complementation of the mutant resulted in a restoration of the wild-type biofilm phenotype ( P  = 0.022). We, however, found no significant difference between mtp expression in cells of the biofilm to those growing planktonically. Our findings highlight a crucial, but non-specific, role of pili in the biofilm lifestyle of M. tuberculosis and indicate that they may represent an important target for the development of therapeutics to attenuate biofilm formation, thereby potentially reducing persistence.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>23907521</pmid><doi>10.1007/s10482-013-9981-6</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-6072
ispartof Antonie van Leeuwenhoek, 2013-11, Vol.104 (5), p.725-735
issn 0003-6072
1572-9699
language eng
recordid cdi_proquest_miscellaneous_1468379056
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Antibiotics
Bacteria
Bacterial Proteins - genetics
Biofilms
Biofilms - growth & development
Biomedical and Life Sciences
Fimbriae, Bacterial - genetics
Fimbriae, Bacterial - physiology
Fimbriae, Bacterial - ultrastructure
Gene Deletion
Gene Expression Profiling
Genetic Complementation Test
Gentian Violet - metabolism
Growth conditions
Life Sciences
Medical Microbiology
Microbiology
Microscopy, Electron, Transmission
Mycobacterium tuberculosis
Mycobacterium tuberculosis - genetics
Mycobacterium tuberculosis - physiology
Mycobacterium tuberculosis - ultrastructure
Original Paper
Plant Sciences
Real-Time Polymerase Chain Reaction
Soil Science & Conservation
Staining and Labeling
Tuberculosis
title Pili contribute to biofilm formation in vitro in Mycobacterium tuberculosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T19%3A10%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pili%20contribute%20to%20biofilm%20formation%20in%20vitro%20in%20Mycobacterium%20tuberculosis&rft.jtitle=Antonie%20van%20Leeuwenhoek&rft.au=Ramsugit,%20Saiyur&rft.date=2013-11-01&rft.volume=104&rft.issue=5&rft.spage=725&rft.epage=735&rft.pages=725-735&rft.issn=0003-6072&rft.eissn=1572-9699&rft_id=info:doi/10.1007/s10482-013-9981-6&rft_dat=%3Cproquest_cross%3E3101774351%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442593359&rft_id=info:pmid/23907521&rfr_iscdi=true