Topological classification and enumeration of RNA structures by genus
To an RNA pseudoknot structure is naturally associated a topological surface, which has its associated genus, and structures can thus be classified by the genus. Based on earlier work of Harer–Zagier, we compute the generating function for the number of those structures of fixed genus and minimum st...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical biology 2013-11, Vol.67 (5), p.1261-1278 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1278 |
---|---|
container_issue | 5 |
container_start_page | 1261 |
container_title | Journal of mathematical biology |
container_volume | 67 |
creator | Andersen, J.E. Penner, R.C. Reidys, C.M. Waterman, M.S. |
description | To an RNA pseudoknot structure is naturally associated a topological surface, which has its associated genus, and structures can thus be classified by the genus. Based on earlier work of Harer–Zagier, we compute the generating function
for the number
of those structures of fixed genus
and minimum stack size
with
nucleotides so that no two consecutive nucleotides are basepaired and show that
is algebraic. In particular, we prove that
, where
. Thus, for stack size at least two, the genus only enters through the sub-exponential factor, and the slow growth rate compared to the number of RNA molecules implies the existence of neutral networks of distinct molecules with the same structure of any genus. Certain RNA structures called shapes are shown to be in natural one-to-one correspondence with the cells in the Penner–Strebel decomposition of Riemann’s moduli space of a surface of genus
with one boundary component, thus providing a link between RNA enumerative problems and the geometry of Riemann’s moduli space. |
doi_str_mv | 10.1007/s00285-012-0594-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1468372291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1468372291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-f638b9995bbec90ff75dbdb24ff735eaa281e7dff311c42cb0adda8af5ef99f73</originalsourceid><addsrcrecordid>eNqNkUtLxTAQhYMoen38ADdScOOmOpPHbbIU8QWiILoOaZpcKr3NNWlB_725VEUEQbLIDPnOGSaHkEOEUwSozhIAlaIEpCUIxcu3DTJDzmiJHOebZAYMWDmXSHfIbkovAFgJhdtkhzIQLJ8ZuXwKq9CFRWtNV9jOpNT6XA9t6AvTN4Xrx6WLUx988Xh_XqQhjnYYo0tF_V4sMpH2yZY3XXIHn_ceeb66fLq4Ke8erm8vzu9Ky7kcSj9nslZKibp2VoH3lWjqpqY8V0w4Y6hEVzXeM0TLqa3BNI2RxgvnlcrMHjmZfFcxvI4uDXrZJuu6zvQujEkjn0tWUarwHyhnHDkVKqPHv9CXMMY-L7KmAKWgIDOFE2VjSCk6r1exXZr4rhH0Og49xaFzHHodh37LmqNP57FeuuZb8fX_GaATkPJTv3Dxx-g_XT8AyqSV5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1440185208</pqid></control><display><type>article</type><title>Topological classification and enumeration of RNA structures by genus</title><source>MEDLINE</source><source>SpringerLink (Online service)</source><creator>Andersen, J.E. ; Penner, R.C. ; Reidys, C.M. ; Waterman, M.S.</creator><creatorcontrib>Andersen, J.E. ; Penner, R.C. ; Reidys, C.M. ; Waterman, M.S.</creatorcontrib><description>To an RNA pseudoknot structure is naturally associated a topological surface, which has its associated genus, and structures can thus be classified by the genus. Based on earlier work of Harer–Zagier, we compute the generating function
for the number
of those structures of fixed genus
and minimum stack size
with
nucleotides so that no two consecutive nucleotides are basepaired and show that
is algebraic. In particular, we prove that
, where
. Thus, for stack size at least two, the genus only enters through the sub-exponential factor, and the slow growth rate compared to the number of RNA molecules implies the existence of neutral networks of distinct molecules with the same structure of any genus. Certain RNA structures called shapes are shown to be in natural one-to-one correspondence with the cells in the Penner–Strebel decomposition of Riemann’s moduli space of a surface of genus
with one boundary component, thus providing a link between RNA enumerative problems and the geometry of Riemann’s moduli space.</description><identifier>ISSN: 0303-6812</identifier><identifier>EISSN: 1432-1416</identifier><identifier>DOI: 10.1007/s00285-012-0594-x</identifier><identifier>PMID: 23053535</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Mathematical and Computational Biology ; Mathematics ; Mathematics and Statistics ; Nucleic Acid Conformation ; RNA - chemistry ; RNA - classification</subject><ispartof>Journal of mathematical biology, 2013-11, Vol.67 (5), p.1261-1278</ispartof><rights>Springer-Verlag 2012</rights><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-f638b9995bbec90ff75dbdb24ff735eaa281e7dff311c42cb0adda8af5ef99f73</citedby><cites>FETCH-LOGICAL-c448t-f638b9995bbec90ff75dbdb24ff735eaa281e7dff311c42cb0adda8af5ef99f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00285-012-0594-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00285-012-0594-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23053535$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Andersen, J.E.</creatorcontrib><creatorcontrib>Penner, R.C.</creatorcontrib><creatorcontrib>Reidys, C.M.</creatorcontrib><creatorcontrib>Waterman, M.S.</creatorcontrib><title>Topological classification and enumeration of RNA structures by genus</title><title>Journal of mathematical biology</title><addtitle>J. Math. Biol</addtitle><addtitle>J Math Biol</addtitle><description>To an RNA pseudoknot structure is naturally associated a topological surface, which has its associated genus, and structures can thus be classified by the genus. Based on earlier work of Harer–Zagier, we compute the generating function
for the number
of those structures of fixed genus
and minimum stack size
with
nucleotides so that no two consecutive nucleotides are basepaired and show that
is algebraic. In particular, we prove that
, where
. Thus, for stack size at least two, the genus only enters through the sub-exponential factor, and the slow growth rate compared to the number of RNA molecules implies the existence of neutral networks of distinct molecules with the same structure of any genus. Certain RNA structures called shapes are shown to be in natural one-to-one correspondence with the cells in the Penner–Strebel decomposition of Riemann’s moduli space of a surface of genus
with one boundary component, thus providing a link between RNA enumerative problems and the geometry of Riemann’s moduli space.</description><subject>Applications of Mathematics</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nucleic Acid Conformation</subject><subject>RNA - chemistry</subject><subject>RNA - classification</subject><issn>0303-6812</issn><issn>1432-1416</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkUtLxTAQhYMoen38ADdScOOmOpPHbbIU8QWiILoOaZpcKr3NNWlB_725VEUEQbLIDPnOGSaHkEOEUwSozhIAlaIEpCUIxcu3DTJDzmiJHOebZAYMWDmXSHfIbkovAFgJhdtkhzIQLJ8ZuXwKq9CFRWtNV9jOpNT6XA9t6AvTN4Xrx6WLUx988Xh_XqQhjnYYo0tF_V4sMpH2yZY3XXIHn_ceeb66fLq4Ke8erm8vzu9Ky7kcSj9nslZKibp2VoH3lWjqpqY8V0w4Y6hEVzXeM0TLqa3BNI2RxgvnlcrMHjmZfFcxvI4uDXrZJuu6zvQujEkjn0tWUarwHyhnHDkVKqPHv9CXMMY-L7KmAKWgIDOFE2VjSCk6r1exXZr4rhH0Og49xaFzHHodh37LmqNP57FeuuZb8fX_GaATkPJTv3Dxx-g_XT8AyqSV5A</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Andersen, J.E.</creator><creator>Penner, R.C.</creator><creator>Reidys, C.M.</creator><creator>Waterman, M.S.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>M7Z</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>20131101</creationdate><title>Topological classification and enumeration of RNA structures by genus</title><author>Andersen, J.E. ; Penner, R.C. ; Reidys, C.M. ; Waterman, M.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-f638b9995bbec90ff75dbdb24ff735eaa281e7dff311c42cb0adda8af5ef99f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applications of Mathematics</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nucleic Acid Conformation</topic><topic>RNA - chemistry</topic><topic>RNA - classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andersen, J.E.</creatorcontrib><creatorcontrib>Penner, R.C.</creatorcontrib><creatorcontrib>Reidys, C.M.</creatorcontrib><creatorcontrib>Waterman, M.S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>ProQuest Engineering Database</collection><collection>Biochemistry Abstracts 1</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andersen, J.E.</au><au>Penner, R.C.</au><au>Reidys, C.M.</au><au>Waterman, M.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological classification and enumeration of RNA structures by genus</atitle><jtitle>Journal of mathematical biology</jtitle><stitle>J. Math. Biol</stitle><addtitle>J Math Biol</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>67</volume><issue>5</issue><spage>1261</spage><epage>1278</epage><pages>1261-1278</pages><issn>0303-6812</issn><eissn>1432-1416</eissn><abstract>To an RNA pseudoknot structure is naturally associated a topological surface, which has its associated genus, and structures can thus be classified by the genus. Based on earlier work of Harer–Zagier, we compute the generating function
for the number
of those structures of fixed genus
and minimum stack size
with
nucleotides so that no two consecutive nucleotides are basepaired and show that
is algebraic. In particular, we prove that
, where
. Thus, for stack size at least two, the genus only enters through the sub-exponential factor, and the slow growth rate compared to the number of RNA molecules implies the existence of neutral networks of distinct molecules with the same structure of any genus. Certain RNA structures called shapes are shown to be in natural one-to-one correspondence with the cells in the Penner–Strebel decomposition of Riemann’s moduli space of a surface of genus
with one boundary component, thus providing a link between RNA enumerative problems and the geometry of Riemann’s moduli space.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>23053535</pmid><doi>10.1007/s00285-012-0594-x</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0303-6812 |
ispartof | Journal of mathematical biology, 2013-11, Vol.67 (5), p.1261-1278 |
issn | 0303-6812 1432-1416 |
language | eng |
recordid | cdi_proquest_miscellaneous_1468372291 |
source | MEDLINE; SpringerLink (Online service) |
subjects | Applications of Mathematics Mathematical and Computational Biology Mathematics Mathematics and Statistics Nucleic Acid Conformation RNA - chemistry RNA - classification |
title | Topological classification and enumeration of RNA structures by genus |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T06%3A54%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20classification%20and%20enumeration%20of%20RNA%20structures%20by%20genus&rft.jtitle=Journal%20of%20mathematical%20biology&rft.au=Andersen,%20J.E.&rft.date=2013-11-01&rft.volume=67&rft.issue=5&rft.spage=1261&rft.epage=1278&rft.pages=1261-1278&rft.issn=0303-6812&rft.eissn=1432-1416&rft_id=info:doi/10.1007/s00285-012-0594-x&rft_dat=%3Cproquest_cross%3E1468372291%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1440185208&rft_id=info:pmid/23053535&rfr_iscdi=true |