Use of quantitative 1H NMR chemical shift changes for ligand docking into barnase
1 H NMR complexation-induced changes in chemical shift (CIS) of HN protons have been used to characterize the complexes of barnase with the deoxyoligonucleotides d(GC) and d(CGAC). Quantitative shift changes are used not only to locate the most probable binding site (using ring-current shifts), but...
Gespeichert in:
Veröffentlicht in: | Journal of biomolecular NMR 2009, Vol.43 (1), p.11-19 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19 |
---|---|
container_issue | 1 |
container_start_page | 11 |
container_title | Journal of biomolecular NMR |
container_volume | 43 |
creator | Cioffi, Marina Hunter, Christopher A. Packer, Martin J. Pandya, Maya J. Williamson, Mike P. |
description | 1
H NMR complexation-induced changes in chemical shift (CIS) of HN protons have been used to characterize the complexes of barnase with the deoxyoligonucleotides d(GC) and d(CGAC). Quantitative shift changes are used not only to locate the most probable binding site (using ring-current shifts), but also to determine the orientation of the ligand within the binding site, based on a more complete shift calculation including bond magnetic anisotropies and electric field effects. For both ligands, the guanine is in the same binding site cleft, in the same position as identified in the crystal structure of the d(CGAC) complex. By contrast, a previous X-ray crystal structure of the d(GC) complex showed the ligand in the mouth of the active site, rather than at the guanyl-specific site, implying that the location may be an artifact of the crystallisation process. |
doi_str_mv | 10.1007/s10858-008-9286-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1468351790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418530701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1937-cb886bd55c83e25c71784b9a115abf7fc39f85f98f90a19c102f1cf48baef8193</originalsourceid><addsrcrecordid>eNp1kFFLwzAUhYMoOKc_wLfgky_R3HZpbh5lqBOmorjnkGbJltm1s2kF_70ZFQTBp8uB7xwuHyHnwK-Ac3kdgaNAxjkylWHB5AEZgZA5E5zDIRlxlQmWyRyPyUmMG865wqwYkZdFdLTx9KM3dRc604VPR2FGnx5fqV27bbCmonEdfJeiqVcuUt-0tAorUy_psrHvoV7RUHcNLU1bm-hOyZE3VXRnP3dMFne3b9MZmz_fP0xv5syCyiWzJWJRLoWwmLtMWAkSJ6UyAMKUXnqbK4_CK_SKG1AWeObB-gmWxnlME2NyOezu2uajd7HT2xCtqypTu6aPGiYF5gKk4gm9-INumj49W0WNCLksQEGCYIBs28TYOq93bdia9ksD13vHenCsk2O9d6xl6mRDJyY2yWl_h_8vfQOYHH2-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881376191</pqid></control><display><type>article</type><title>Use of quantitative 1H NMR chemical shift changes for ligand docking into barnase</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cioffi, Marina ; Hunter, Christopher A. ; Packer, Martin J. ; Pandya, Maya J. ; Williamson, Mike P.</creator><creatorcontrib>Cioffi, Marina ; Hunter, Christopher A. ; Packer, Martin J. ; Pandya, Maya J. ; Williamson, Mike P.</creatorcontrib><description>1
H NMR complexation-induced changes in chemical shift (CIS) of HN protons have been used to characterize the complexes of barnase with the deoxyoligonucleotides d(GC) and d(CGAC). Quantitative shift changes are used not only to locate the most probable binding site (using ring-current shifts), but also to determine the orientation of the ligand within the binding site, based on a more complete shift calculation including bond magnetic anisotropies and electric field effects. For both ligands, the guanine is in the same binding site cleft, in the same position as identified in the crystal structure of the d(CGAC) complex. By contrast, a previous X-ray crystal structure of the d(GC) complex showed the ligand in the mouth of the active site, rather than at the guanyl-specific site, implying that the location may be an artifact of the crystallisation process.</description><identifier>ISSN: 0925-2738</identifier><identifier>EISSN: 1573-5001</identifier><identifier>DOI: 10.1007/s10858-008-9286-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Anisotropy ; Binding sites ; Biochemistry ; Biological and Medical Physics ; Biophysics ; Crystal structure ; Physics ; Physics and Astronomy ; Spectroscopy/Spectrometry</subject><ispartof>Journal of biomolecular NMR, 2009, Vol.43 (1), p.11-19</ispartof><rights>Springer Science+Business Media B.V. 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1937-cb886bd55c83e25c71784b9a115abf7fc39f85f98f90a19c102f1cf48baef8193</citedby><cites>FETCH-LOGICAL-c1937-cb886bd55c83e25c71784b9a115abf7fc39f85f98f90a19c102f1cf48baef8193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10858-008-9286-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10858-008-9286-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Cioffi, Marina</creatorcontrib><creatorcontrib>Hunter, Christopher A.</creatorcontrib><creatorcontrib>Packer, Martin J.</creatorcontrib><creatorcontrib>Pandya, Maya J.</creatorcontrib><creatorcontrib>Williamson, Mike P.</creatorcontrib><title>Use of quantitative 1H NMR chemical shift changes for ligand docking into barnase</title><title>Journal of biomolecular NMR</title><addtitle>J Biomol NMR</addtitle><description>1
H NMR complexation-induced changes in chemical shift (CIS) of HN protons have been used to characterize the complexes of barnase with the deoxyoligonucleotides d(GC) and d(CGAC). Quantitative shift changes are used not only to locate the most probable binding site (using ring-current shifts), but also to determine the orientation of the ligand within the binding site, based on a more complete shift calculation including bond magnetic anisotropies and electric field effects. For both ligands, the guanine is in the same binding site cleft, in the same position as identified in the crystal structure of the d(CGAC) complex. By contrast, a previous X-ray crystal structure of the d(GC) complex showed the ligand in the mouth of the active site, rather than at the guanyl-specific site, implying that the location may be an artifact of the crystallisation process.</description><subject>Anisotropy</subject><subject>Binding sites</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Crystal structure</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Spectroscopy/Spectrometry</subject><issn>0925-2738</issn><issn>1573-5001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kFFLwzAUhYMoOKc_wLfgky_R3HZpbh5lqBOmorjnkGbJltm1s2kF_70ZFQTBp8uB7xwuHyHnwK-Ac3kdgaNAxjkylWHB5AEZgZA5E5zDIRlxlQmWyRyPyUmMG865wqwYkZdFdLTx9KM3dRc604VPR2FGnx5fqV27bbCmonEdfJeiqVcuUt-0tAorUy_psrHvoV7RUHcNLU1bm-hOyZE3VXRnP3dMFne3b9MZmz_fP0xv5syCyiWzJWJRLoWwmLtMWAkSJ6UyAMKUXnqbK4_CK_SKG1AWeObB-gmWxnlME2NyOezu2uajd7HT2xCtqypTu6aPGiYF5gKk4gm9-INumj49W0WNCLksQEGCYIBs28TYOq93bdia9ksD13vHenCsk2O9d6xl6mRDJyY2yWl_h_8vfQOYHH2-</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Cioffi, Marina</creator><creator>Hunter, Christopher A.</creator><creator>Packer, Martin J.</creator><creator>Pandya, Maya J.</creator><creator>Williamson, Mike P.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>2009</creationdate><title>Use of quantitative 1H NMR chemical shift changes for ligand docking into barnase</title><author>Cioffi, Marina ; Hunter, Christopher A. ; Packer, Martin J. ; Pandya, Maya J. ; Williamson, Mike P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1937-cb886bd55c83e25c71784b9a115abf7fc39f85f98f90a19c102f1cf48baef8193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Anisotropy</topic><topic>Binding sites</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Crystal structure</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Spectroscopy/Spectrometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cioffi, Marina</creatorcontrib><creatorcontrib>Hunter, Christopher A.</creatorcontrib><creatorcontrib>Packer, Martin J.</creatorcontrib><creatorcontrib>Pandya, Maya J.</creatorcontrib><creatorcontrib>Williamson, Mike P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of biomolecular NMR</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cioffi, Marina</au><au>Hunter, Christopher A.</au><au>Packer, Martin J.</au><au>Pandya, Maya J.</au><au>Williamson, Mike P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of quantitative 1H NMR chemical shift changes for ligand docking into barnase</atitle><jtitle>Journal of biomolecular NMR</jtitle><stitle>J Biomol NMR</stitle><date>2009</date><risdate>2009</risdate><volume>43</volume><issue>1</issue><spage>11</spage><epage>19</epage><pages>11-19</pages><issn>0925-2738</issn><eissn>1573-5001</eissn><abstract>1
H NMR complexation-induced changes in chemical shift (CIS) of HN protons have been used to characterize the complexes of barnase with the deoxyoligonucleotides d(GC) and d(CGAC). Quantitative shift changes are used not only to locate the most probable binding site (using ring-current shifts), but also to determine the orientation of the ligand within the binding site, based on a more complete shift calculation including bond magnetic anisotropies and electric field effects. For both ligands, the guanine is in the same binding site cleft, in the same position as identified in the crystal structure of the d(CGAC) complex. By contrast, a previous X-ray crystal structure of the d(GC) complex showed the ligand in the mouth of the active site, rather than at the guanyl-specific site, implying that the location may be an artifact of the crystallisation process.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10858-008-9286-7</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-2738 |
ispartof | Journal of biomolecular NMR, 2009, Vol.43 (1), p.11-19 |
issn | 0925-2738 1573-5001 |
language | eng |
recordid | cdi_proquest_miscellaneous_1468351790 |
source | SpringerLink Journals - AutoHoldings |
subjects | Anisotropy Binding sites Biochemistry Biological and Medical Physics Biophysics Crystal structure Physics Physics and Astronomy Spectroscopy/Spectrometry |
title | Use of quantitative 1H NMR chemical shift changes for ligand docking into barnase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A30%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20quantitative%201H%20NMR%20chemical%20shift%20changes%20for%20ligand%20docking%20into%20barnase&rft.jtitle=Journal%20of%20biomolecular%20NMR&rft.au=Cioffi,%20Marina&rft.date=2009&rft.volume=43&rft.issue=1&rft.spage=11&rft.epage=19&rft.pages=11-19&rft.issn=0925-2738&rft.eissn=1573-5001&rft_id=info:doi/10.1007/s10858-008-9286-7&rft_dat=%3Cproquest_cross%3E2418530701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=881376191&rft_id=info:pmid/&rfr_iscdi=true |