Use of quantitative 1H NMR chemical shift changes for ligand docking into barnase

1 H NMR complexation-induced changes in chemical shift (CIS) of HN protons have been used to characterize the complexes of barnase with the deoxyoligonucleotides d(GC) and d(CGAC). Quantitative shift changes are used not only to locate the most probable binding site (using ring-current shifts), but...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of biomolecular NMR 2009, Vol.43 (1), p.11-19
Hauptverfasser: Cioffi, Marina, Hunter, Christopher A., Packer, Martin J., Pandya, Maya J., Williamson, Mike P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19
container_issue 1
container_start_page 11
container_title Journal of biomolecular NMR
container_volume 43
creator Cioffi, Marina
Hunter, Christopher A.
Packer, Martin J.
Pandya, Maya J.
Williamson, Mike P.
description 1 H NMR complexation-induced changes in chemical shift (CIS) of HN protons have been used to characterize the complexes of barnase with the deoxyoligonucleotides d(GC) and d(CGAC). Quantitative shift changes are used not only to locate the most probable binding site (using ring-current shifts), but also to determine the orientation of the ligand within the binding site, based on a more complete shift calculation including bond magnetic anisotropies and electric field effects. For both ligands, the guanine is in the same binding site cleft, in the same position as identified in the crystal structure of the d(CGAC) complex. By contrast, a previous X-ray crystal structure of the d(GC) complex showed the ligand in the mouth of the active site, rather than at the guanyl-specific site, implying that the location may be an artifact of the crystallisation process.
doi_str_mv 10.1007/s10858-008-9286-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1468351790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2418530701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1937-cb886bd55c83e25c71784b9a115abf7fc39f85f98f90a19c102f1cf48baef8193</originalsourceid><addsrcrecordid>eNp1kFFLwzAUhYMoOKc_wLfgky_R3HZpbh5lqBOmorjnkGbJltm1s2kF_70ZFQTBp8uB7xwuHyHnwK-Ac3kdgaNAxjkylWHB5AEZgZA5E5zDIRlxlQmWyRyPyUmMG865wqwYkZdFdLTx9KM3dRc604VPR2FGnx5fqV27bbCmonEdfJeiqVcuUt-0tAorUy_psrHvoV7RUHcNLU1bm-hOyZE3VXRnP3dMFne3b9MZmz_fP0xv5syCyiWzJWJRLoWwmLtMWAkSJ6UyAMKUXnqbK4_CK_SKG1AWeObB-gmWxnlME2NyOezu2uajd7HT2xCtqypTu6aPGiYF5gKk4gm9-INumj49W0WNCLksQEGCYIBs28TYOq93bdia9ksD13vHenCsk2O9d6xl6mRDJyY2yWl_h_8vfQOYHH2-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>881376191</pqid></control><display><type>article</type><title>Use of quantitative 1H NMR chemical shift changes for ligand docking into barnase</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cioffi, Marina ; Hunter, Christopher A. ; Packer, Martin J. ; Pandya, Maya J. ; Williamson, Mike P.</creator><creatorcontrib>Cioffi, Marina ; Hunter, Christopher A. ; Packer, Martin J. ; Pandya, Maya J. ; Williamson, Mike P.</creatorcontrib><description>1 H NMR complexation-induced changes in chemical shift (CIS) of HN protons have been used to characterize the complexes of barnase with the deoxyoligonucleotides d(GC) and d(CGAC). Quantitative shift changes are used not only to locate the most probable binding site (using ring-current shifts), but also to determine the orientation of the ligand within the binding site, based on a more complete shift calculation including bond magnetic anisotropies and electric field effects. For both ligands, the guanine is in the same binding site cleft, in the same position as identified in the crystal structure of the d(CGAC) complex. By contrast, a previous X-ray crystal structure of the d(GC) complex showed the ligand in the mouth of the active site, rather than at the guanyl-specific site, implying that the location may be an artifact of the crystallisation process.</description><identifier>ISSN: 0925-2738</identifier><identifier>EISSN: 1573-5001</identifier><identifier>DOI: 10.1007/s10858-008-9286-7</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Anisotropy ; Binding sites ; Biochemistry ; Biological and Medical Physics ; Biophysics ; Crystal structure ; Physics ; Physics and Astronomy ; Spectroscopy/Spectrometry</subject><ispartof>Journal of biomolecular NMR, 2009, Vol.43 (1), p.11-19</ispartof><rights>Springer Science+Business Media B.V. 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1937-cb886bd55c83e25c71784b9a115abf7fc39f85f98f90a19c102f1cf48baef8193</citedby><cites>FETCH-LOGICAL-c1937-cb886bd55c83e25c71784b9a115abf7fc39f85f98f90a19c102f1cf48baef8193</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10858-008-9286-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10858-008-9286-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,41471,42540,51302</link.rule.ids></links><search><creatorcontrib>Cioffi, Marina</creatorcontrib><creatorcontrib>Hunter, Christopher A.</creatorcontrib><creatorcontrib>Packer, Martin J.</creatorcontrib><creatorcontrib>Pandya, Maya J.</creatorcontrib><creatorcontrib>Williamson, Mike P.</creatorcontrib><title>Use of quantitative 1H NMR chemical shift changes for ligand docking into barnase</title><title>Journal of biomolecular NMR</title><addtitle>J Biomol NMR</addtitle><description>1 H NMR complexation-induced changes in chemical shift (CIS) of HN protons have been used to characterize the complexes of barnase with the deoxyoligonucleotides d(GC) and d(CGAC). Quantitative shift changes are used not only to locate the most probable binding site (using ring-current shifts), but also to determine the orientation of the ligand within the binding site, based on a more complete shift calculation including bond magnetic anisotropies and electric field effects. For both ligands, the guanine is in the same binding site cleft, in the same position as identified in the crystal structure of the d(CGAC) complex. By contrast, a previous X-ray crystal structure of the d(GC) complex showed the ligand in the mouth of the active site, rather than at the guanyl-specific site, implying that the location may be an artifact of the crystallisation process.</description><subject>Anisotropy</subject><subject>Binding sites</subject><subject>Biochemistry</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Crystal structure</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Spectroscopy/Spectrometry</subject><issn>0925-2738</issn><issn>1573-5001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kFFLwzAUhYMoOKc_wLfgky_R3HZpbh5lqBOmorjnkGbJltm1s2kF_70ZFQTBp8uB7xwuHyHnwK-Ac3kdgaNAxjkylWHB5AEZgZA5E5zDIRlxlQmWyRyPyUmMG865wqwYkZdFdLTx9KM3dRc604VPR2FGnx5fqV27bbCmonEdfJeiqVcuUt-0tAorUy_psrHvoV7RUHcNLU1bm-hOyZE3VXRnP3dMFne3b9MZmz_fP0xv5syCyiWzJWJRLoWwmLtMWAkSJ6UyAMKUXnqbK4_CK_SKG1AWeObB-gmWxnlME2NyOezu2uajd7HT2xCtqypTu6aPGiYF5gKk4gm9-INumj49W0WNCLksQEGCYIBs28TYOq93bdia9ksD13vHenCsk2O9d6xl6mRDJyY2yWl_h_8vfQOYHH2-</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Cioffi, Marina</creator><creator>Hunter, Christopher A.</creator><creator>Packer, Martin J.</creator><creator>Pandya, Maya J.</creator><creator>Williamson, Mike P.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>2009</creationdate><title>Use of quantitative 1H NMR chemical shift changes for ligand docking into barnase</title><author>Cioffi, Marina ; Hunter, Christopher A. ; Packer, Martin J. ; Pandya, Maya J. ; Williamson, Mike P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1937-cb886bd55c83e25c71784b9a115abf7fc39f85f98f90a19c102f1cf48baef8193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Anisotropy</topic><topic>Binding sites</topic><topic>Biochemistry</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Crystal structure</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Spectroscopy/Spectrometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cioffi, Marina</creatorcontrib><creatorcontrib>Hunter, Christopher A.</creatorcontrib><creatorcontrib>Packer, Martin J.</creatorcontrib><creatorcontrib>Pandya, Maya J.</creatorcontrib><creatorcontrib>Williamson, Mike P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of biomolecular NMR</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cioffi, Marina</au><au>Hunter, Christopher A.</au><au>Packer, Martin J.</au><au>Pandya, Maya J.</au><au>Williamson, Mike P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of quantitative 1H NMR chemical shift changes for ligand docking into barnase</atitle><jtitle>Journal of biomolecular NMR</jtitle><stitle>J Biomol NMR</stitle><date>2009</date><risdate>2009</risdate><volume>43</volume><issue>1</issue><spage>11</spage><epage>19</epage><pages>11-19</pages><issn>0925-2738</issn><eissn>1573-5001</eissn><abstract>1 H NMR complexation-induced changes in chemical shift (CIS) of HN protons have been used to characterize the complexes of barnase with the deoxyoligonucleotides d(GC) and d(CGAC). Quantitative shift changes are used not only to locate the most probable binding site (using ring-current shifts), but also to determine the orientation of the ligand within the binding site, based on a more complete shift calculation including bond magnetic anisotropies and electric field effects. For both ligands, the guanine is in the same binding site cleft, in the same position as identified in the crystal structure of the d(CGAC) complex. By contrast, a previous X-ray crystal structure of the d(GC) complex showed the ligand in the mouth of the active site, rather than at the guanyl-specific site, implying that the location may be an artifact of the crystallisation process.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10858-008-9286-7</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-2738
ispartof Journal of biomolecular NMR, 2009, Vol.43 (1), p.11-19
issn 0925-2738
1573-5001
language eng
recordid cdi_proquest_miscellaneous_1468351790
source SpringerLink Journals - AutoHoldings
subjects Anisotropy
Binding sites
Biochemistry
Biological and Medical Physics
Biophysics
Crystal structure
Physics
Physics and Astronomy
Spectroscopy/Spectrometry
title Use of quantitative 1H NMR chemical shift changes for ligand docking into barnase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A30%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20quantitative%201H%20NMR%20chemical%20shift%20changes%20for%20ligand%20docking%20into%20barnase&rft.jtitle=Journal%20of%20biomolecular%20NMR&rft.au=Cioffi,%20Marina&rft.date=2009&rft.volume=43&rft.issue=1&rft.spage=11&rft.epage=19&rft.pages=11-19&rft.issn=0925-2738&rft.eissn=1573-5001&rft_id=info:doi/10.1007/s10858-008-9286-7&rft_dat=%3Cproquest_cross%3E2418530701%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=881376191&rft_id=info:pmid/&rfr_iscdi=true