Classification of polycyclic aromatic hydrocarbons based on mutagenicity in lung tissue through DNA microarray

Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants produced in the combustion of organic matter. Exposure to PAHs raises the risk of lung cancer and inflammatory and allergic disorders such as asthma. DNA microarray technologies have been applied to research on toxicogen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental toxicology 2013-11, Vol.28 (11), p.652-659
Hauptverfasser: Hirano, Minoru, Tanaka, Shiho, Asami, Osamu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 659
container_issue 11
container_start_page 652
container_title Environmental toxicology
container_volume 28
creator Hirano, Minoru
Tanaka, Shiho
Asami, Osamu
description Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants produced in the combustion of organic matter. Exposure to PAHs raises the risk of lung cancer and inflammatory and allergic disorders such as asthma. DNA microarray technologies have been applied to research on toxicogenomics in the recent years. To evaluate the mutagenicity of PAHs and constituents of environmental pollutants in lung tissue, including metabolic activation, human alveolar epithelial type II cells (A549) were treated with nonmutagenic PAH pyrene and with the mutagenic PAHs benzo‐[a]‐pyrene, 1‐nitropyrene, or 1,8‐dinitropyrene. Comparison of genome‐wide microarray expression profiles between a nonmutagenic and a mutagenic PAH‐treated group revealed that xenobiotic response genes such as CYP1B1 were commonly upregulated in two groups and that DNA damage induced genes, especially p53‐downstream genes such as p21 (CDKN1A) were upregulated only in the mutagenic PAH‐treated group. Pretreatment with cytochrome P450 inhibitor α‐naphthoflavone or p53 inhibitor pifithrin‐α inhibited the benzo‐[a]‐pyrene‐induced p21 expression. These data suggest that when PAHs enter the cells, lung epithelium induces PAH metabolic activating enzymes, and then the DNA damages‐recognition signal is converged with p53 downstream genes. This metabolic activation and DNA damage is induced in lung epithelium, and the mutagenicity of PAHs can be classified by DNA microarray expression profiles. © 2011 Wiley Periodicals, Inc. Environ Toxicol 28:652–659, 2013.
doi_str_mv 10.1002/tox.20761
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1468340458</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1468340458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4201-fbd42a96ffdfc470bcfcf4cb1da4f7429d638ef732a6f621c4a07a0446d88f433</originalsourceid><addsrcrecordid>eNpd0U1v3CAQBmCratV8tIf-gQqpipSLE8AY8DHatptWUXJJldzQGMMuqQ1bsJX435fubhMpJ0bwzGjEWxSfCD4jGNPzMTydUSw4eVMckprSUlAh325rXDIsyUFxlNIDxrjhNX9fHFAipZCEHxZ-0UNKzjoNowseBYs2oZ_1rHunEcQw5HuN1nMXg4bYBp9QC8l0KONhGmFlvNNunJHzqJ_8Co0upcmgcR3DtFqjr9cXaHA6BogR5g_FOwt9Mh_353Hx6_u328VleXWz_LG4uCo1o5iUtu0YhYZb21nNBG611ZbplnTArGC06XgljRUVBW45JZoBFoAZ452UllXVcXG6m7uJ4c9k0qgGl7Tpe_AmTEkRxmXFMKtlpl9e0YcwRZ-3y4pVXEhZN1l93qupHUynNtENEGf1_yczONkDSBp6G8Frl16caBomKpHd-c49ut7Mz-8Eq39Rqhyl2kapbm_ut0XuKHcdLo3m6bkD4m_F88Ra3V0vlby7xD-XC6Luq7_Z2KEF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1443678859</pqid></control><display><type>article</type><title>Classification of polycyclic aromatic hydrocarbons based on mutagenicity in lung tissue through DNA microarray</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Hirano, Minoru ; Tanaka, Shiho ; Asami, Osamu</creator><creatorcontrib>Hirano, Minoru ; Tanaka, Shiho ; Asami, Osamu</creatorcontrib><description>Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants produced in the combustion of organic matter. Exposure to PAHs raises the risk of lung cancer and inflammatory and allergic disorders such as asthma. DNA microarray technologies have been applied to research on toxicogenomics in the recent years. To evaluate the mutagenicity of PAHs and constituents of environmental pollutants in lung tissue, including metabolic activation, human alveolar epithelial type II cells (A549) were treated with nonmutagenic PAH pyrene and with the mutagenic PAHs benzo‐[a]‐pyrene, 1‐nitropyrene, or 1,8‐dinitropyrene. Comparison of genome‐wide microarray expression profiles between a nonmutagenic and a mutagenic PAH‐treated group revealed that xenobiotic response genes such as CYP1B1 were commonly upregulated in two groups and that DNA damage induced genes, especially p53‐downstream genes such as p21 (CDKN1A) were upregulated only in the mutagenic PAH‐treated group. Pretreatment with cytochrome P450 inhibitor α‐naphthoflavone or p53 inhibitor pifithrin‐α inhibited the benzo‐[a]‐pyrene‐induced p21 expression. These data suggest that when PAHs enter the cells, lung epithelium induces PAH metabolic activating enzymes, and then the DNA damages‐recognition signal is converged with p53 downstream genes. This metabolic activation and DNA damage is induced in lung epithelium, and the mutagenicity of PAHs can be classified by DNA microarray expression profiles. © 2011 Wiley Periodicals, Inc. Environ Toxicol 28:652–659, 2013.</description><identifier>ISSN: 1520-4081</identifier><identifier>EISSN: 1522-7278</identifier><identifier>DOI: 10.1002/tox.20761</identifier><identifier>PMID: 21887816</identifier><identifier>CODEN: ETOXFH</identifier><language>eng</language><publisher>Hoboken, NJ: Blackwell Publishing Ltd</publisher><subject>Aryl Hydrocarbon Hydroxylases - antagonists &amp; inhibitors ; Aryl Hydrocarbon Hydroxylases - genetics ; Benzoflavones - pharmacology ; Benzothiazoles - pharmacology ; Biological and medical sciences ; cancer ; Cell Line ; cytochrome P450 ; DNA Damage ; DNA microarray ; Environmental Pollutants - classification ; Environmental Pollutants - toxicity ; Gene Expression Profiling ; Gene Expression Regulation ; Gene Ontology ; General aspects. Methods ; Genes, p53 ; Humans ; lung ; Lung - cytology ; Lung - drug effects ; Lung - metabolism ; Medical sciences ; metabolic activation ; mutagenicity ; Mutagenicity Tests ; Oligonucleotide Array Sequence Analysis ; p53 ; PAH ; polycyclic aromatic hydrocarbon ; Polycyclic Aromatic Hydrocarbons - classification ; Polycyclic Aromatic Hydrocarbons - toxicity ; Pulmonary Alveoli - cytology ; Pulmonary Alveoli - drug effects ; Pulmonary Alveoli - metabolism ; Respiratory Mucosa - cytology ; Respiratory Mucosa - drug effects ; Respiratory Mucosa - metabolism ; Toluene - analogs &amp; derivatives ; Toluene - pharmacology ; Toxicology</subject><ispartof>Environmental toxicology, 2013-11, Vol.28 (11), p.652-659</ispartof><rights>Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4201-fbd42a96ffdfc470bcfcf4cb1da4f7429d638ef732a6f621c4a07a0446d88f433</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ftox.20761$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ftox.20761$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27994737$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21887816$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hirano, Minoru</creatorcontrib><creatorcontrib>Tanaka, Shiho</creatorcontrib><creatorcontrib>Asami, Osamu</creatorcontrib><title>Classification of polycyclic aromatic hydrocarbons based on mutagenicity in lung tissue through DNA microarray</title><title>Environmental toxicology</title><addtitle>Environ. Toxicol</addtitle><description>Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants produced in the combustion of organic matter. Exposure to PAHs raises the risk of lung cancer and inflammatory and allergic disorders such as asthma. DNA microarray technologies have been applied to research on toxicogenomics in the recent years. To evaluate the mutagenicity of PAHs and constituents of environmental pollutants in lung tissue, including metabolic activation, human alveolar epithelial type II cells (A549) were treated with nonmutagenic PAH pyrene and with the mutagenic PAHs benzo‐[a]‐pyrene, 1‐nitropyrene, or 1,8‐dinitropyrene. Comparison of genome‐wide microarray expression profiles between a nonmutagenic and a mutagenic PAH‐treated group revealed that xenobiotic response genes such as CYP1B1 were commonly upregulated in two groups and that DNA damage induced genes, especially p53‐downstream genes such as p21 (CDKN1A) were upregulated only in the mutagenic PAH‐treated group. Pretreatment with cytochrome P450 inhibitor α‐naphthoflavone or p53 inhibitor pifithrin‐α inhibited the benzo‐[a]‐pyrene‐induced p21 expression. These data suggest that when PAHs enter the cells, lung epithelium induces PAH metabolic activating enzymes, and then the DNA damages‐recognition signal is converged with p53 downstream genes. This metabolic activation and DNA damage is induced in lung epithelium, and the mutagenicity of PAHs can be classified by DNA microarray expression profiles. © 2011 Wiley Periodicals, Inc. Environ Toxicol 28:652–659, 2013.</description><subject>Aryl Hydrocarbon Hydroxylases - antagonists &amp; inhibitors</subject><subject>Aryl Hydrocarbon Hydroxylases - genetics</subject><subject>Benzoflavones - pharmacology</subject><subject>Benzothiazoles - pharmacology</subject><subject>Biological and medical sciences</subject><subject>cancer</subject><subject>Cell Line</subject><subject>cytochrome P450</subject><subject>DNA Damage</subject><subject>DNA microarray</subject><subject>Environmental Pollutants - classification</subject><subject>Environmental Pollutants - toxicity</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation</subject><subject>Gene Ontology</subject><subject>General aspects. Methods</subject><subject>Genes, p53</subject><subject>Humans</subject><subject>lung</subject><subject>Lung - cytology</subject><subject>Lung - drug effects</subject><subject>Lung - metabolism</subject><subject>Medical sciences</subject><subject>metabolic activation</subject><subject>mutagenicity</subject><subject>Mutagenicity Tests</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>p53</subject><subject>PAH</subject><subject>polycyclic aromatic hydrocarbon</subject><subject>Polycyclic Aromatic Hydrocarbons - classification</subject><subject>Polycyclic Aromatic Hydrocarbons - toxicity</subject><subject>Pulmonary Alveoli - cytology</subject><subject>Pulmonary Alveoli - drug effects</subject><subject>Pulmonary Alveoli - metabolism</subject><subject>Respiratory Mucosa - cytology</subject><subject>Respiratory Mucosa - drug effects</subject><subject>Respiratory Mucosa - metabolism</subject><subject>Toluene - analogs &amp; derivatives</subject><subject>Toluene - pharmacology</subject><subject>Toxicology</subject><issn>1520-4081</issn><issn>1522-7278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0U1v3CAQBmCratV8tIf-gQqpipSLE8AY8DHatptWUXJJldzQGMMuqQ1bsJX435fubhMpJ0bwzGjEWxSfCD4jGNPzMTydUSw4eVMckprSUlAh325rXDIsyUFxlNIDxrjhNX9fHFAipZCEHxZ-0UNKzjoNowseBYs2oZ_1rHunEcQw5HuN1nMXg4bYBp9QC8l0KONhGmFlvNNunJHzqJ_8Co0upcmgcR3DtFqjr9cXaHA6BogR5g_FOwt9Mh_353Hx6_u328VleXWz_LG4uCo1o5iUtu0YhYZb21nNBG611ZbplnTArGC06XgljRUVBW45JZoBFoAZ452UllXVcXG6m7uJ4c9k0qgGl7Tpe_AmTEkRxmXFMKtlpl9e0YcwRZ-3y4pVXEhZN1l93qupHUynNtENEGf1_yczONkDSBp6G8Frl16caBomKpHd-c49ut7Mz-8Eq39Rqhyl2kapbm_ut0XuKHcdLo3m6bkD4m_F88Ra3V0vlby7xD-XC6Luq7_Z2KEF</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Hirano, Minoru</creator><creator>Tanaka, Shiho</creator><creator>Asami, Osamu</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QH</scope><scope>7ST</scope><scope>7TN</scope><scope>7U7</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>K9.</scope><scope>L.G</scope><scope>M7N</scope><scope>SOI</scope><scope>7T2</scope><scope>7TM</scope><scope>7TV</scope><scope>7U1</scope><scope>7U2</scope></search><sort><creationdate>201311</creationdate><title>Classification of polycyclic aromatic hydrocarbons based on mutagenicity in lung tissue through DNA microarray</title><author>Hirano, Minoru ; Tanaka, Shiho ; Asami, Osamu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4201-fbd42a96ffdfc470bcfcf4cb1da4f7429d638ef732a6f621c4a07a0446d88f433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Aryl Hydrocarbon Hydroxylases - antagonists &amp; inhibitors</topic><topic>Aryl Hydrocarbon Hydroxylases - genetics</topic><topic>Benzoflavones - pharmacology</topic><topic>Benzothiazoles - pharmacology</topic><topic>Biological and medical sciences</topic><topic>cancer</topic><topic>Cell Line</topic><topic>cytochrome P450</topic><topic>DNA Damage</topic><topic>DNA microarray</topic><topic>Environmental Pollutants - classification</topic><topic>Environmental Pollutants - toxicity</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation</topic><topic>Gene Ontology</topic><topic>General aspects. Methods</topic><topic>Genes, p53</topic><topic>Humans</topic><topic>lung</topic><topic>Lung - cytology</topic><topic>Lung - drug effects</topic><topic>Lung - metabolism</topic><topic>Medical sciences</topic><topic>metabolic activation</topic><topic>mutagenicity</topic><topic>Mutagenicity Tests</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>p53</topic><topic>PAH</topic><topic>polycyclic aromatic hydrocarbon</topic><topic>Polycyclic Aromatic Hydrocarbons - classification</topic><topic>Polycyclic Aromatic Hydrocarbons - toxicity</topic><topic>Pulmonary Alveoli - cytology</topic><topic>Pulmonary Alveoli - drug effects</topic><topic>Pulmonary Alveoli - metabolism</topic><topic>Respiratory Mucosa - cytology</topic><topic>Respiratory Mucosa - drug effects</topic><topic>Respiratory Mucosa - metabolism</topic><topic>Toluene - analogs &amp; derivatives</topic><topic>Toluene - pharmacology</topic><topic>Toxicology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirano, Minoru</creatorcontrib><creatorcontrib>Tanaka, Shiho</creatorcontrib><creatorcontrib>Asami, Osamu</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Environment Abstracts</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Nucleic Acids Abstracts</collection><collection>Pollution Abstracts</collection><collection>Risk Abstracts</collection><collection>Safety Science and Risk</collection><jtitle>Environmental toxicology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirano, Minoru</au><au>Tanaka, Shiho</au><au>Asami, Osamu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of polycyclic aromatic hydrocarbons based on mutagenicity in lung tissue through DNA microarray</atitle><jtitle>Environmental toxicology</jtitle><addtitle>Environ. Toxicol</addtitle><date>2013-11</date><risdate>2013</risdate><volume>28</volume><issue>11</issue><spage>652</spage><epage>659</epage><pages>652-659</pages><issn>1520-4081</issn><eissn>1522-7278</eissn><coden>ETOXFH</coden><abstract>Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants produced in the combustion of organic matter. Exposure to PAHs raises the risk of lung cancer and inflammatory and allergic disorders such as asthma. DNA microarray technologies have been applied to research on toxicogenomics in the recent years. To evaluate the mutagenicity of PAHs and constituents of environmental pollutants in lung tissue, including metabolic activation, human alveolar epithelial type II cells (A549) were treated with nonmutagenic PAH pyrene and with the mutagenic PAHs benzo‐[a]‐pyrene, 1‐nitropyrene, or 1,8‐dinitropyrene. Comparison of genome‐wide microarray expression profiles between a nonmutagenic and a mutagenic PAH‐treated group revealed that xenobiotic response genes such as CYP1B1 were commonly upregulated in two groups and that DNA damage induced genes, especially p53‐downstream genes such as p21 (CDKN1A) were upregulated only in the mutagenic PAH‐treated group. Pretreatment with cytochrome P450 inhibitor α‐naphthoflavone or p53 inhibitor pifithrin‐α inhibited the benzo‐[a]‐pyrene‐induced p21 expression. These data suggest that when PAHs enter the cells, lung epithelium induces PAH metabolic activating enzymes, and then the DNA damages‐recognition signal is converged with p53 downstream genes. This metabolic activation and DNA damage is induced in lung epithelium, and the mutagenicity of PAHs can be classified by DNA microarray expression profiles. © 2011 Wiley Periodicals, Inc. Environ Toxicol 28:652–659, 2013.</abstract><cop>Hoboken, NJ</cop><pub>Blackwell Publishing Ltd</pub><pmid>21887816</pmid><doi>10.1002/tox.20761</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-4081
ispartof Environmental toxicology, 2013-11, Vol.28 (11), p.652-659
issn 1520-4081
1522-7278
language eng
recordid cdi_proquest_miscellaneous_1468340458
source MEDLINE; Wiley Journals
subjects Aryl Hydrocarbon Hydroxylases - antagonists & inhibitors
Aryl Hydrocarbon Hydroxylases - genetics
Benzoflavones - pharmacology
Benzothiazoles - pharmacology
Biological and medical sciences
cancer
Cell Line
cytochrome P450
DNA Damage
DNA microarray
Environmental Pollutants - classification
Environmental Pollutants - toxicity
Gene Expression Profiling
Gene Expression Regulation
Gene Ontology
General aspects. Methods
Genes, p53
Humans
lung
Lung - cytology
Lung - drug effects
Lung - metabolism
Medical sciences
metabolic activation
mutagenicity
Mutagenicity Tests
Oligonucleotide Array Sequence Analysis
p53
PAH
polycyclic aromatic hydrocarbon
Polycyclic Aromatic Hydrocarbons - classification
Polycyclic Aromatic Hydrocarbons - toxicity
Pulmonary Alveoli - cytology
Pulmonary Alveoli - drug effects
Pulmonary Alveoli - metabolism
Respiratory Mucosa - cytology
Respiratory Mucosa - drug effects
Respiratory Mucosa - metabolism
Toluene - analogs & derivatives
Toluene - pharmacology
Toxicology
title Classification of polycyclic aromatic hydrocarbons based on mutagenicity in lung tissue through DNA microarray
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A32%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20polycyclic%20aromatic%20hydrocarbons%20based%20on%20mutagenicity%20in%20lung%20tissue%20through%20DNA%20microarray&rft.jtitle=Environmental%20toxicology&rft.au=Hirano,%20Minoru&rft.date=2013-11&rft.volume=28&rft.issue=11&rft.spage=652&rft.epage=659&rft.pages=652-659&rft.issn=1520-4081&rft.eissn=1522-7278&rft.coden=ETOXFH&rft_id=info:doi/10.1002/tox.20761&rft_dat=%3Cproquest_pubme%3E1468340458%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1443678859&rft_id=info:pmid/21887816&rfr_iscdi=true