Wide-Angle X-Ray Scattering and Solid-State Nuclear Magnetic Resonance Data Combined to Test Models for Cellulose Microfibrils in Mung Bean Cell Walls

A synchrotron wide-angle x-ray scattering study of mung bean (Vigna radiata) primary cell walls was combined with published solid-state nuclear magnetic resonance data to test models for packing of (1→4)-β-glucan chains in cellulose microfibrils. Computer-simulated peak shapes, calculated for 36-cha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Plant physiology (Bethesda) 2013-12, Vol.163 (4), p.1558-1567
Hauptverfasser: Newman, Roger H., Hill, Stefan J., Harris, Philip J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1567
container_issue 4
container_start_page 1558
container_title Plant physiology (Bethesda)
container_volume 163
creator Newman, Roger H.
Hill, Stefan J.
Harris, Philip J.
description A synchrotron wide-angle x-ray scattering study of mung bean (Vigna radiata) primary cell walls was combined with published solid-state nuclear magnetic resonance data to test models for packing of (1→4)-β-glucan chains in cellulose microfibrils. Computer-simulated peak shapes, calculated for 36-chain microfibrils with perfect order or uncorrelated disorder, were sharper than those in the experimental diffractogram. Introducing correlated disorder into the models broaden the simulated peaks but only when the disorder was increased to unrealistic magnitudes. Computer-simulated diffractograms, calculated for 24- and 18-chain models, showed good fits to experimental data. Particularly good fits to both x-ray and nuclear magnetic resonance data were obtained for collections of 18-chain models with mixed cross-sectional shapes and occasional twinning. Synthesis of 18-chain microfibrils is consistent with a model for cellulose-synthesizing complexes in which three cellulose synthase polypeptides form a particle and six particles form a rosette.
doi_str_mv 10.1104/pp.113.228262
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1464889026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23598879</jstor_id><sourcerecordid>23598879</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-df267482b6a014744084698de2d6f6f7517cfa91395221111c1cbd3d2f52c2523</originalsourceid><addsrcrecordid>eNpFkU9vFSEUxYnR2Nfq0qWGjUk3U4FhGGZZn3-TPk36aupuwsDlhYYHU2AW_SJ-XtH3tGwOyf3l3pNzEHpFyQWlhL-b56rtBWOSCfYErWjXsoZ1XD5FK0Lqn0g5nKDTnO8IIbSl_Dk6YZx2XDC6Qr9unYHmMuw84J_NtXrAW61KgeTCDqtg8DZ6Z5ptUQXwt0V7UAlv1C5AcRpfQ45BBQ34gyoKr-N-cgEMLhHfQC54Ew34jG1MeA3eLz5mwBunU7RuSq6OXMCbpZ56Dyr8ZfCt8j6_QM-s8hleHvUM_fj08Wb9pbn6_vnr-vKq0bwjpTGWiZ5LNglFKO85J5KLQRpgRlhh-4722qqBtkPHGK1PUz2Z1jDbMc061p6h88PeOcX7pVoe9y7rakMFiEseKRe85keYqGhzQKv7nBPYcU5ur9LDSMn4p4pxnqu246GKyr85rl6mPZj_9L_sK_D2CKislbepBunyIydrXUIOlXt94O5yielx3naDlP3Q_gYfuZnp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464889026</pqid></control><display><type>article</type><title>Wide-Angle X-Ray Scattering and Solid-State Nuclear Magnetic Resonance Data Combined to Test Models for Cellulose Microfibrils in Mung Bean Cell Walls</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Newman, Roger H. ; Hill, Stefan J. ; Harris, Philip J.</creator><creatorcontrib>Newman, Roger H. ; Hill, Stefan J. ; Harris, Philip J.</creatorcontrib><description>A synchrotron wide-angle x-ray scattering study of mung bean (Vigna radiata) primary cell walls was combined with published solid-state nuclear magnetic resonance data to test models for packing of (1→4)-β-glucan chains in cellulose microfibrils. Computer-simulated peak shapes, calculated for 36-chain microfibrils with perfect order or uncorrelated disorder, were sharper than those in the experimental diffractogram. Introducing correlated disorder into the models broaden the simulated peaks but only when the disorder was increased to unrealistic magnitudes. Computer-simulated diffractograms, calculated for 24- and 18-chain models, showed good fits to experimental data. Particularly good fits to both x-ray and nuclear magnetic resonance data were obtained for collections of 18-chain models with mixed cross-sectional shapes and occasional twinning. Synthesis of 18-chain microfibrils is consistent with a model for cellulose-synthesizing complexes in which three cellulose synthase polypeptides form a particle and six particles form a rosette.</description><identifier>ISSN: 0032-0889</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.113.228262</identifier><identifier>PMID: 24154621</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>BIOCHEMISTRY AND METABOLISM ; Biological and medical sciences ; Cell Wall - chemistry ; Cell walls ; Cellulose - chemistry ; Crystal lattices ; Crystal structure ; Crystals ; Experimental data ; Fabaceae - cytology ; Fundamental and applied biological sciences. Psychology ; Hydrogen ; Magnetic Resonance Spectroscopy ; Microfibrils - chemistry ; Models, Molecular ; Nuclear magnetic resonance ; Plant cells ; Plant physiology and development ; Plants ; Scattering, Radiation ; Synchrotrons ; X-Ray Diffraction</subject><ispartof>Plant physiology (Bethesda), 2013-12, Vol.163 (4), p.1558-1567</ispartof><rights>2013 American Society of Plant Biologists</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-df267482b6a014744084698de2d6f6f7517cfa91395221111c1cbd3d2f52c2523</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23598879$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23598879$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,58017,58250</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28001689$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24154621$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Newman, Roger H.</creatorcontrib><creatorcontrib>Hill, Stefan J.</creatorcontrib><creatorcontrib>Harris, Philip J.</creatorcontrib><title>Wide-Angle X-Ray Scattering and Solid-State Nuclear Magnetic Resonance Data Combined to Test Models for Cellulose Microfibrils in Mung Bean Cell Walls</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>A synchrotron wide-angle x-ray scattering study of mung bean (Vigna radiata) primary cell walls was combined with published solid-state nuclear magnetic resonance data to test models for packing of (1→4)-β-glucan chains in cellulose microfibrils. Computer-simulated peak shapes, calculated for 36-chain microfibrils with perfect order or uncorrelated disorder, were sharper than those in the experimental diffractogram. Introducing correlated disorder into the models broaden the simulated peaks but only when the disorder was increased to unrealistic magnitudes. Computer-simulated diffractograms, calculated for 24- and 18-chain models, showed good fits to experimental data. Particularly good fits to both x-ray and nuclear magnetic resonance data were obtained for collections of 18-chain models with mixed cross-sectional shapes and occasional twinning. Synthesis of 18-chain microfibrils is consistent with a model for cellulose-synthesizing complexes in which three cellulose synthase polypeptides form a particle and six particles form a rosette.</description><subject>BIOCHEMISTRY AND METABOLISM</subject><subject>Biological and medical sciences</subject><subject>Cell Wall - chemistry</subject><subject>Cell walls</subject><subject>Cellulose - chemistry</subject><subject>Crystal lattices</subject><subject>Crystal structure</subject><subject>Crystals</subject><subject>Experimental data</subject><subject>Fabaceae - cytology</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrogen</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Microfibrils - chemistry</subject><subject>Models, Molecular</subject><subject>Nuclear magnetic resonance</subject><subject>Plant cells</subject><subject>Plant physiology and development</subject><subject>Plants</subject><subject>Scattering, Radiation</subject><subject>Synchrotrons</subject><subject>X-Ray Diffraction</subject><issn>0032-0889</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpFkU9vFSEUxYnR2Nfq0qWGjUk3U4FhGGZZn3-TPk36aupuwsDlhYYHU2AW_SJ-XtH3tGwOyf3l3pNzEHpFyQWlhL-b56rtBWOSCfYErWjXsoZ1XD5FK0Lqn0g5nKDTnO8IIbSl_Dk6YZx2XDC6Qr9unYHmMuw84J_NtXrAW61KgeTCDqtg8DZ6Z5ptUQXwt0V7UAlv1C5AcRpfQ45BBQ34gyoKr-N-cgEMLhHfQC54Ew34jG1MeA3eLz5mwBunU7RuSq6OXMCbpZ56Dyr8ZfCt8j6_QM-s8hleHvUM_fj08Wb9pbn6_vnr-vKq0bwjpTGWiZ5LNglFKO85J5KLQRpgRlhh-4722qqBtkPHGK1PUz2Z1jDbMc061p6h88PeOcX7pVoe9y7rakMFiEseKRe85keYqGhzQKv7nBPYcU5ur9LDSMn4p4pxnqu246GKyr85rl6mPZj_9L_sK_D2CKislbepBunyIydrXUIOlXt94O5yielx3naDlP3Q_gYfuZnp</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Newman, Roger H.</creator><creator>Hill, Stefan J.</creator><creator>Harris, Philip J.</creator><general>American Society of Plant Biologists</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20131201</creationdate><title>Wide-Angle X-Ray Scattering and Solid-State Nuclear Magnetic Resonance Data Combined to Test Models for Cellulose Microfibrils in Mung Bean Cell Walls</title><author>Newman, Roger H. ; Hill, Stefan J. ; Harris, Philip J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-df267482b6a014744084698de2d6f6f7517cfa91395221111c1cbd3d2f52c2523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>BIOCHEMISTRY AND METABOLISM</topic><topic>Biological and medical sciences</topic><topic>Cell Wall - chemistry</topic><topic>Cell walls</topic><topic>Cellulose - chemistry</topic><topic>Crystal lattices</topic><topic>Crystal structure</topic><topic>Crystals</topic><topic>Experimental data</topic><topic>Fabaceae - cytology</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrogen</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Microfibrils - chemistry</topic><topic>Models, Molecular</topic><topic>Nuclear magnetic resonance</topic><topic>Plant cells</topic><topic>Plant physiology and development</topic><topic>Plants</topic><topic>Scattering, Radiation</topic><topic>Synchrotrons</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Newman, Roger H.</creatorcontrib><creatorcontrib>Hill, Stefan J.</creatorcontrib><creatorcontrib>Harris, Philip J.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Newman, Roger H.</au><au>Hill, Stefan J.</au><au>Harris, Philip J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wide-Angle X-Ray Scattering and Solid-State Nuclear Magnetic Resonance Data Combined to Test Models for Cellulose Microfibrils in Mung Bean Cell Walls</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>163</volume><issue>4</issue><spage>1558</spage><epage>1567</epage><pages>1558-1567</pages><issn>0032-0889</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>A synchrotron wide-angle x-ray scattering study of mung bean (Vigna radiata) primary cell walls was combined with published solid-state nuclear magnetic resonance data to test models for packing of (1→4)-β-glucan chains in cellulose microfibrils. Computer-simulated peak shapes, calculated for 36-chain microfibrils with perfect order or uncorrelated disorder, were sharper than those in the experimental diffractogram. Introducing correlated disorder into the models broaden the simulated peaks but only when the disorder was increased to unrealistic magnitudes. Computer-simulated diffractograms, calculated for 24- and 18-chain models, showed good fits to experimental data. Particularly good fits to both x-ray and nuclear magnetic resonance data were obtained for collections of 18-chain models with mixed cross-sectional shapes and occasional twinning. Synthesis of 18-chain microfibrils is consistent with a model for cellulose-synthesizing complexes in which three cellulose synthase polypeptides form a particle and six particles form a rosette.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>24154621</pmid><doi>10.1104/pp.113.228262</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-0889
ispartof Plant physiology (Bethesda), 2013-12, Vol.163 (4), p.1558-1567
issn 0032-0889
1532-2548
language eng
recordid cdi_proquest_miscellaneous_1464889026
source MEDLINE; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals
subjects BIOCHEMISTRY AND METABOLISM
Biological and medical sciences
Cell Wall - chemistry
Cell walls
Cellulose - chemistry
Crystal lattices
Crystal structure
Crystals
Experimental data
Fabaceae - cytology
Fundamental and applied biological sciences. Psychology
Hydrogen
Magnetic Resonance Spectroscopy
Microfibrils - chemistry
Models, Molecular
Nuclear magnetic resonance
Plant cells
Plant physiology and development
Plants
Scattering, Radiation
Synchrotrons
X-Ray Diffraction
title Wide-Angle X-Ray Scattering and Solid-State Nuclear Magnetic Resonance Data Combined to Test Models for Cellulose Microfibrils in Mung Bean Cell Walls
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A02%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wide-Angle%20X-Ray%20Scattering%20and%20Solid-State%20Nuclear%20Magnetic%20Resonance%20Data%20Combined%20to%20Test%20Models%20for%20Cellulose%20Microfibrils%20in%20Mung%20Bean%20Cell%20Walls&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Newman,%20Roger%20H.&rft.date=2013-12-01&rft.volume=163&rft.issue=4&rft.spage=1558&rft.epage=1567&rft.pages=1558-1567&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.113.228262&rft_dat=%3Cjstor_proqu%3E23598879%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464889026&rft_id=info:pmid/24154621&rft_jstor_id=23598879&rfr_iscdi=true