Optical Properties of Intact Leaves for Estimating Chlorophyll Concentration
Changes in leaf chlorophyll content can serve as relative indicators of plant vigor and environmental quality. This study identified reflectance, transmittance, and absorptance wavebands and band ratios within the 400- to 850-nm range for intact leaves that could be used to estimate extracted leaf c...
Gespeichert in:
Veröffentlicht in: | Journal of environmental quality 2002-09, Vol.31 (5), p.1424-1432 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1432 |
---|---|
container_issue | 5 |
container_start_page | 1424 |
container_title | Journal of environmental quality |
container_volume | 31 |
creator | Carter, Gregory A Spiering, Bruce A |
description | Changes in leaf chlorophyll content can serve as relative indicators of plant vigor and environmental quality. This study identified reflectance, transmittance, and absorptance wavebands and band ratios within the 400- to 850-nm range for intact leaves that could be used to estimate extracted leaf chlorophyll per unit leaf area (areal concentration) with minimal error. Leaf optical properties along with chlorophyll a, b, and a + b concentrations were measured for the planar-leaved sweetgum (Liquidambar styraciflua L.), red maple (Acer rubrum L.), wild grape (Vitis rotundifolia Michx.), and switchcane [Arundinaria gigantea (Walter) Muhl.], and for needles of longleaf pine (Pinus palustris Miller). Generally, reflectance, transmittance, and absorptance corresponded most precisely with chlorophyll concentrations at wavelengths near 700 nm, although regressions were also strong in the 550- to 625-nm range. A power function was superior to a simple linear function in yielding low standard deviations of the estimate (s). When data were combined among the planar-leaved species, s values were low at approximately 50 μmol/m2 out of a 940 μmol/m2 range in chlorophyll a + b at best-fit wavelengths of 707 to 709 nm. Minimal s values for chlorophyll a + b ranged from 32 to 62 μmol/m2 across species when band ratios having numerator wavelengths of 693 to 720 nm were used with the application of a power function. Optimal denominator wavelengths for the band ratios were 850 nm for reflectance and transmittance and 400 nm for absorptance. This information can be applied in designing field portable chlorophyll meters and in the landscape-scale remote sensing of plant responses to the environment. |
doi_str_mv | 10.2134/jeq2002.1424 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_14648355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>199342361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4734-593a680b42f73addfc2e026103bf8efd6e60fbff50d1d00c60d72d6157445a433</originalsourceid><addsrcrecordid>eNp9kEtvGjEUha0oVUNod1lGySiLrAq5189hGSHyqJBo1bC2zIxNBg1jsIdW_PuazkiVuujCD93z3WPfQ8gVwpgi4w8bu6cAdIyc8jMyQMHUiKbtnAwAeLpzKi7IZYwbAKSg5EdygZQpRJEPyHyxa6vC1Nm34Hc2tJWNmXfZa9Oaos3m1vxMBedDNotttTVt1ayz6XvtE_1-rOts6pvCNm1Iim8-kQ_O1NF-7s8hWT7N3qYvo_ni-XX6OB8VXDE-EhNmZA4rTp1ipixdQS1QicBWLreulFaCWzknoMQSoJBQKlpKFIpzYThjQ3Lf-e6C3x9sbPW2ioWta9NYf4gaueQ5EyKBd_-AG38ITfqbxolieS6RJ-hLBxXBxxis07uQRg1HjaBPEes-Yn2KOOE3vedhtbXlX7jPNAGTDvhV1fb4XzP9dfadnlYq9ObXXW9jotEp16iTxgHyHP7Mc9vJznht1qGKevmDAjLASXpZKvYbctWYng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>197388614</pqid></control><display><type>article</type><title>Optical Properties of Intact Leaves for Estimating Chlorophyll Concentration</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><source>NASA Technical Reports Server</source><creator>Carter, Gregory A ; Spiering, Bruce A</creator><creatorcontrib>Carter, Gregory A ; Spiering, Bruce A</creatorcontrib><description>Changes in leaf chlorophyll content can serve as relative indicators of plant vigor and environmental quality. This study identified reflectance, transmittance, and absorptance wavebands and band ratios within the 400- to 850-nm range for intact leaves that could be used to estimate extracted leaf chlorophyll per unit leaf area (areal concentration) with minimal error. Leaf optical properties along with chlorophyll a, b, and a + b concentrations were measured for the planar-leaved sweetgum (Liquidambar styraciflua L.), red maple (Acer rubrum L.), wild grape (Vitis rotundifolia Michx.), and switchcane [Arundinaria gigantea (Walter) Muhl.], and for needles of longleaf pine (Pinus palustris Miller). Generally, reflectance, transmittance, and absorptance corresponded most precisely with chlorophyll concentrations at wavelengths near 700 nm, although regressions were also strong in the 550- to 625-nm range. A power function was superior to a simple linear function in yielding low standard deviations of the estimate (s). When data were combined among the planar-leaved species, s values were low at approximately 50 μmol/m2 out of a 940 μmol/m2 range in chlorophyll a + b at best-fit wavelengths of 707 to 709 nm. Minimal s values for chlorophyll a + b ranged from 32 to 62 μmol/m2 across species when band ratios having numerator wavelengths of 693 to 720 nm were used with the application of a power function. Optimal denominator wavelengths for the band ratios were 850 nm for reflectance and transmittance and 400 nm for absorptance. This information can be applied in designing field portable chlorophyll meters and in the landscape-scale remote sensing of plant responses to the environment.</description><identifier>ISSN: 0047-2425</identifier><identifier>EISSN: 1537-2537</identifier><identifier>DOI: 10.2134/jeq2002.1424</identifier><identifier>PMID: 12371158</identifier><identifier>CODEN: JEVQAA</identifier><language>eng</language><publisher>Legacy CDMS: American Society of Agronomy, Crop Science Society of America, Soil Science Society</publisher><subject>Absorptance ; Chlorophyll ; Chlorophyll - analysis ; Ecosystem ; Environmental Monitoring - methods ; Environmental quality ; Leaves ; Life Sciences (General) ; Optical properties ; Optics and Photonics ; Pine needles ; Pine trees ; Plant Leaves - chemistry ; Reflectance ; Remote sensing ; Transmittance ; Wavelengths</subject><ispartof>Journal of environmental quality, 2002-09, Vol.31 (5), p.1424-1432</ispartof><rights>Published in J. Environ. Qual.31:1424–1432.</rights><rights>Copyright American Society of Agronomy Sep/Oct 2002</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4734-593a680b42f73addfc2e026103bf8efd6e60fbff50d1d00c60d72d6157445a433</citedby><cites>FETCH-LOGICAL-c4734-593a680b42f73addfc2e026103bf8efd6e60fbff50d1d00c60d72d6157445a433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.2134%2Fjeq2002.1424$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.2134%2Fjeq2002.1424$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12371158$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Carter, Gregory A</creatorcontrib><creatorcontrib>Spiering, Bruce A</creatorcontrib><title>Optical Properties of Intact Leaves for Estimating Chlorophyll Concentration</title><title>Journal of environmental quality</title><addtitle>J Environ Qual</addtitle><description>Changes in leaf chlorophyll content can serve as relative indicators of plant vigor and environmental quality. This study identified reflectance, transmittance, and absorptance wavebands and band ratios within the 400- to 850-nm range for intact leaves that could be used to estimate extracted leaf chlorophyll per unit leaf area (areal concentration) with minimal error. Leaf optical properties along with chlorophyll a, b, and a + b concentrations were measured for the planar-leaved sweetgum (Liquidambar styraciflua L.), red maple (Acer rubrum L.), wild grape (Vitis rotundifolia Michx.), and switchcane [Arundinaria gigantea (Walter) Muhl.], and for needles of longleaf pine (Pinus palustris Miller). Generally, reflectance, transmittance, and absorptance corresponded most precisely with chlorophyll concentrations at wavelengths near 700 nm, although regressions were also strong in the 550- to 625-nm range. A power function was superior to a simple linear function in yielding low standard deviations of the estimate (s). When data were combined among the planar-leaved species, s values were low at approximately 50 μmol/m2 out of a 940 μmol/m2 range in chlorophyll a + b at best-fit wavelengths of 707 to 709 nm. Minimal s values for chlorophyll a + b ranged from 32 to 62 μmol/m2 across species when band ratios having numerator wavelengths of 693 to 720 nm were used with the application of a power function. Optimal denominator wavelengths for the band ratios were 850 nm for reflectance and transmittance and 400 nm for absorptance. This information can be applied in designing field portable chlorophyll meters and in the landscape-scale remote sensing of plant responses to the environment.</description><subject>Absorptance</subject><subject>Chlorophyll</subject><subject>Chlorophyll - analysis</subject><subject>Ecosystem</subject><subject>Environmental Monitoring - methods</subject><subject>Environmental quality</subject><subject>Leaves</subject><subject>Life Sciences (General)</subject><subject>Optical properties</subject><subject>Optics and Photonics</subject><subject>Pine needles</subject><subject>Pine trees</subject><subject>Plant Leaves - chemistry</subject><subject>Reflectance</subject><subject>Remote sensing</subject><subject>Transmittance</subject><subject>Wavelengths</subject><issn>0047-2425</issn><issn>1537-2537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kEtvGjEUha0oVUNod1lGySiLrAq5189hGSHyqJBo1bC2zIxNBg1jsIdW_PuazkiVuujCD93z3WPfQ8gVwpgi4w8bu6cAdIyc8jMyQMHUiKbtnAwAeLpzKi7IZYwbAKSg5EdygZQpRJEPyHyxa6vC1Nm34Hc2tJWNmXfZa9Oaos3m1vxMBedDNotttTVt1ayz6XvtE_1-rOts6pvCNm1Iim8-kQ_O1NF-7s8hWT7N3qYvo_ni-XX6OB8VXDE-EhNmZA4rTp1ipixdQS1QicBWLreulFaCWzknoMQSoJBQKlpKFIpzYThjQ3Lf-e6C3x9sbPW2ioWta9NYf4gaueQ5EyKBd_-AG38ITfqbxolieS6RJ-hLBxXBxxis07uQRg1HjaBPEes-Yn2KOOE3vedhtbXlX7jPNAGTDvhV1fb4XzP9dfadnlYq9ObXXW9jotEp16iTxgHyHP7Mc9vJznht1qGKevmDAjLASXpZKvYbctWYng</recordid><startdate>200209</startdate><enddate>200209</enddate><creator>Carter, Gregory A</creator><creator>Spiering, Bruce A</creator><general>American Society of Agronomy, Crop Science Society of America, Soil Science Society</general><general>American Society of Agronomy</general><scope>FBQ</scope><scope>CYE</scope><scope>CYI</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7T7</scope><scope>7TG</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KL.</scope><scope>L6V</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope><scope>SOI</scope></search><sort><creationdate>200209</creationdate><title>Optical Properties of Intact Leaves for Estimating Chlorophyll Concentration</title><author>Carter, Gregory A ; Spiering, Bruce A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4734-593a680b42f73addfc2e026103bf8efd6e60fbff50d1d00c60d72d6157445a433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Absorptance</topic><topic>Chlorophyll</topic><topic>Chlorophyll - analysis</topic><topic>Ecosystem</topic><topic>Environmental Monitoring - methods</topic><topic>Environmental quality</topic><topic>Leaves</topic><topic>Life Sciences (General)</topic><topic>Optical properties</topic><topic>Optics and Photonics</topic><topic>Pine needles</topic><topic>Pine trees</topic><topic>Plant Leaves - chemistry</topic><topic>Reflectance</topic><topic>Remote sensing</topic><topic>Transmittance</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carter, Gregory A</creatorcontrib><creatorcontrib>Spiering, Bruce A</creatorcontrib><collection>AGRIS</collection><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><jtitle>Journal of environmental quality</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carter, Gregory A</au><au>Spiering, Bruce A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical Properties of Intact Leaves for Estimating Chlorophyll Concentration</atitle><jtitle>Journal of environmental quality</jtitle><addtitle>J Environ Qual</addtitle><date>2002-09</date><risdate>2002</risdate><volume>31</volume><issue>5</issue><spage>1424</spage><epage>1432</epage><pages>1424-1432</pages><issn>0047-2425</issn><eissn>1537-2537</eissn><coden>JEVQAA</coden><abstract>Changes in leaf chlorophyll content can serve as relative indicators of plant vigor and environmental quality. This study identified reflectance, transmittance, and absorptance wavebands and band ratios within the 400- to 850-nm range for intact leaves that could be used to estimate extracted leaf chlorophyll per unit leaf area (areal concentration) with minimal error. Leaf optical properties along with chlorophyll a, b, and a + b concentrations were measured for the planar-leaved sweetgum (Liquidambar styraciflua L.), red maple (Acer rubrum L.), wild grape (Vitis rotundifolia Michx.), and switchcane [Arundinaria gigantea (Walter) Muhl.], and for needles of longleaf pine (Pinus palustris Miller). Generally, reflectance, transmittance, and absorptance corresponded most precisely with chlorophyll concentrations at wavelengths near 700 nm, although regressions were also strong in the 550- to 625-nm range. A power function was superior to a simple linear function in yielding low standard deviations of the estimate (s). When data were combined among the planar-leaved species, s values were low at approximately 50 μmol/m2 out of a 940 μmol/m2 range in chlorophyll a + b at best-fit wavelengths of 707 to 709 nm. Minimal s values for chlorophyll a + b ranged from 32 to 62 μmol/m2 across species when band ratios having numerator wavelengths of 693 to 720 nm were used with the application of a power function. Optimal denominator wavelengths for the band ratios were 850 nm for reflectance and transmittance and 400 nm for absorptance. This information can be applied in designing field portable chlorophyll meters and in the landscape-scale remote sensing of plant responses to the environment.</abstract><cop>Legacy CDMS</cop><pub>American Society of Agronomy, Crop Science Society of America, Soil Science Society</pub><pmid>12371158</pmid><doi>10.2134/jeq2002.1424</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0047-2425 |
ispartof | Journal of environmental quality, 2002-09, Vol.31 (5), p.1424-1432 |
issn | 0047-2425 1537-2537 |
language | eng |
recordid | cdi_proquest_miscellaneous_14648355 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE; NASA Technical Reports Server |
subjects | Absorptance Chlorophyll Chlorophyll - analysis Ecosystem Environmental Monitoring - methods Environmental quality Leaves Life Sciences (General) Optical properties Optics and Photonics Pine needles Pine trees Plant Leaves - chemistry Reflectance Remote sensing Transmittance Wavelengths |
title | Optical Properties of Intact Leaves for Estimating Chlorophyll Concentration |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A33%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20Properties%20of%20Intact%20Leaves%20for%20Estimating%20Chlorophyll%20Concentration&rft.jtitle=Journal%20of%20environmental%20quality&rft.au=Carter,%20Gregory%20A&rft.date=2002-09&rft.volume=31&rft.issue=5&rft.spage=1424&rft.epage=1432&rft.pages=1424-1432&rft.issn=0047-2425&rft.eissn=1537-2537&rft.coden=JEVQAA&rft_id=info:doi/10.2134/jeq2002.1424&rft_dat=%3Cproquest_cross%3E199342361%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=197388614&rft_id=info:pmid/12371158&rfr_iscdi=true |