Theoretical and Experimental Studies of a Probabilistic-Based Memoryless PA Linearization Technique

This paper studies the performance of a memoryless power amplifier (PA) linearization technique based on a probabilistic approach. This technique employs a nonparametric method to derive a predistorter function, which does not need any parametric modeling and explicit parameter estimation. It only n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circuits, systems, and signal processing systems, and signal processing, 2013-12, Vol.32 (6), p.3031-3057
Hauptverfasser: Zhu, Zhiwen, Huang, Xinping, Caron, Mario
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3057
container_issue 6
container_start_page 3031
container_title Circuits, systems, and signal processing
container_volume 32
creator Zhu, Zhiwen
Huang, Xinping
Caron, Mario
description This paper studies the performance of a memoryless power amplifier (PA) linearization technique based on a probabilistic approach. This technique employs a nonparametric method to derive a predistorter function, which does not need any parametric modeling and explicit parameter estimation. It only needs to calculate a probabilistic cumulative distribution function (CDF) and a quantile function (an inverse function of the CDF). Histogram and order statistic methods are proposed to perform the calculation. A rigorous analytic formula is derived for the inter-modulation product power (IMPP) of the PA output signal when a finite number of samples as well as a finite number of bins are used to calculate the CDF and the quantile function. The analytic results show that, with the probabilistic-based technique, the IMPP approaches zero as the number of samples approaches infinity and the bin width approaches zero. Computer simulations are utilized to verify the theoretical analysis and to compare the performance of the probabilistic-based linearization technique with those of other memoryless PA linearization techniques, while a prototype experiment is carried out to demonstrate its performance in a practical application. Results show that the technique can accurately determine the predistortion function that effectively compensates for the nonlinearity in the PA, and that it achieves a much better linearization performance compared to other existing methods, especially in the presence of a loop delay in the feedback circuit.
doi_str_mv 10.1007/s00034-013-9612-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1464604215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1464604215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-56a556705a9d08280ce835ee1f4d835a0f82907b7382472f11c418caee43e7c03</originalsourceid><addsrcrecordid>eNp1kE1rGzEQhkVJoI7TH9CboJdc1Iw-dqU9OiZpAg4xxIHehKydbRTWK1daQ5xfHxn3EAo5zTA8887wEPKdw08OoC8zAEjFgEvW1Fyw6guZ8EpyVhltTsgEhDYMDP_9lZzl_ALAG9WICfGrZ4wJx-BdT93Q0uvXLaawwWEsg8dx1wbMNHbU0WWKa7cOfciFZlcuY0vvcRPTvsec6XJGF2FAl8KbG0Mc6Ar98xD-7vCcnHauz_jtX52Sp5vr1fyWLR5-3c1nC-alakZW1a6qag2Va1owwoBHIytE3qm2NA46IxrQay2NUFp0nHvFjXeISqL2IKfk4pi7TbGczaPdhOyx792AcZctV7WqQYniZUp-_Ie-xF0ayneFUhqMlFwUih8pn2LOCTu7LWpc2lsO9qDdHrXbot0etNtDsjju5MIOfzB9SP506R1oR4Rt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1447083312</pqid></control><display><type>article</type><title>Theoretical and Experimental Studies of a Probabilistic-Based Memoryless PA Linearization Technique</title><source>SpringerLink Journals (MCLS)</source><creator>Zhu, Zhiwen ; Huang, Xinping ; Caron, Mario</creator><creatorcontrib>Zhu, Zhiwen ; Huang, Xinping ; Caron, Mario</creatorcontrib><description>This paper studies the performance of a memoryless power amplifier (PA) linearization technique based on a probabilistic approach. This technique employs a nonparametric method to derive a predistorter function, which does not need any parametric modeling and explicit parameter estimation. It only needs to calculate a probabilistic cumulative distribution function (CDF) and a quantile function (an inverse function of the CDF). Histogram and order statistic methods are proposed to perform the calculation. A rigorous analytic formula is derived for the inter-modulation product power (IMPP) of the PA output signal when a finite number of samples as well as a finite number of bins are used to calculate the CDF and the quantile function. The analytic results show that, with the probabilistic-based technique, the IMPP approaches zero as the number of samples approaches infinity and the bin width approaches zero. Computer simulations are utilized to verify the theoretical analysis and to compare the performance of the probabilistic-based linearization technique with those of other memoryless PA linearization techniques, while a prototype experiment is carried out to demonstrate its performance in a practical application. Results show that the technique can accurately determine the predistortion function that effectively compensates for the nonlinearity in the PA, and that it achieves a much better linearization performance compared to other existing methods, especially in the presence of a loop delay in the feedback circuit.</description><identifier>ISSN: 0278-081X</identifier><identifier>EISSN: 1531-5878</identifier><identifier>DOI: 10.1007/s00034-013-9612-5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Circuits and Systems ; Electrical Engineering ; Electronics and Microelectronics ; Engineering ; Instrumentation ; Linearization ; Mathematical analysis ; Mathematical models ; Probabilistic methods ; Probability distribution ; Probability theory ; Receivers &amp; amplifiers ; Samples ; Signal processing ; Signal,Image and Speech Processing ; Statistical analysis ; Statistical methods</subject><ispartof>Circuits, systems, and signal processing, 2013-12, Vol.32 (6), p.3031-3057</ispartof><rights>Her Majesty the Queen in Right of Canada 2013</rights><rights>Springer Science+Business Media New York 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-56a556705a9d08280ce835ee1f4d835a0f82907b7382472f11c418caee43e7c03</citedby><cites>FETCH-LOGICAL-c349t-56a556705a9d08280ce835ee1f4d835a0f82907b7382472f11c418caee43e7c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00034-013-9612-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00034-013-9612-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Zhu, Zhiwen</creatorcontrib><creatorcontrib>Huang, Xinping</creatorcontrib><creatorcontrib>Caron, Mario</creatorcontrib><title>Theoretical and Experimental Studies of a Probabilistic-Based Memoryless PA Linearization Technique</title><title>Circuits, systems, and signal processing</title><addtitle>Circuits Syst Signal Process</addtitle><description>This paper studies the performance of a memoryless power amplifier (PA) linearization technique based on a probabilistic approach. This technique employs a nonparametric method to derive a predistorter function, which does not need any parametric modeling and explicit parameter estimation. It only needs to calculate a probabilistic cumulative distribution function (CDF) and a quantile function (an inverse function of the CDF). Histogram and order statistic methods are proposed to perform the calculation. A rigorous analytic formula is derived for the inter-modulation product power (IMPP) of the PA output signal when a finite number of samples as well as a finite number of bins are used to calculate the CDF and the quantile function. The analytic results show that, with the probabilistic-based technique, the IMPP approaches zero as the number of samples approaches infinity and the bin width approaches zero. Computer simulations are utilized to verify the theoretical analysis and to compare the performance of the probabilistic-based linearization technique with those of other memoryless PA linearization techniques, while a prototype experiment is carried out to demonstrate its performance in a practical application. Results show that the technique can accurately determine the predistortion function that effectively compensates for the nonlinearity in the PA, and that it achieves a much better linearization performance compared to other existing methods, especially in the presence of a loop delay in the feedback circuit.</description><subject>Circuits and Systems</subject><subject>Electrical Engineering</subject><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Instrumentation</subject><subject>Linearization</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Probabilistic methods</subject><subject>Probability distribution</subject><subject>Probability theory</subject><subject>Receivers &amp; amplifiers</subject><subject>Samples</subject><subject>Signal processing</subject><subject>Signal,Image and Speech Processing</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><issn>0278-081X</issn><issn>1531-5878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1rGzEQhkVJoI7TH9CboJdc1Iw-dqU9OiZpAg4xxIHehKydbRTWK1daQ5xfHxn3EAo5zTA8887wEPKdw08OoC8zAEjFgEvW1Fyw6guZ8EpyVhltTsgEhDYMDP_9lZzl_ALAG9WICfGrZ4wJx-BdT93Q0uvXLaawwWEsg8dx1wbMNHbU0WWKa7cOfciFZlcuY0vvcRPTvsec6XJGF2FAl8KbG0Mc6Ar98xD-7vCcnHauz_jtX52Sp5vr1fyWLR5-3c1nC-alakZW1a6qag2Va1owwoBHIytE3qm2NA46IxrQay2NUFp0nHvFjXeISqL2IKfk4pi7TbGczaPdhOyx792AcZctV7WqQYniZUp-_Ie-xF0ayneFUhqMlFwUih8pn2LOCTu7LWpc2lsO9qDdHrXbot0etNtDsjju5MIOfzB9SP506R1oR4Rt</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Zhu, Zhiwen</creator><creator>Huang, Xinping</creator><creator>Caron, Mario</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20131201</creationdate><title>Theoretical and Experimental Studies of a Probabilistic-Based Memoryless PA Linearization Technique</title><author>Zhu, Zhiwen ; Huang, Xinping ; Caron, Mario</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-56a556705a9d08280ce835ee1f4d835a0f82907b7382472f11c418caee43e7c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Circuits and Systems</topic><topic>Electrical Engineering</topic><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Instrumentation</topic><topic>Linearization</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Probabilistic methods</topic><topic>Probability distribution</topic><topic>Probability theory</topic><topic>Receivers &amp; amplifiers</topic><topic>Samples</topic><topic>Signal processing</topic><topic>Signal,Image and Speech Processing</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Zhiwen</creatorcontrib><creatorcontrib>Huang, Xinping</creatorcontrib><creatorcontrib>Caron, Mario</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Circuits, systems, and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Zhiwen</au><au>Huang, Xinping</au><au>Caron, Mario</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical and Experimental Studies of a Probabilistic-Based Memoryless PA Linearization Technique</atitle><jtitle>Circuits, systems, and signal processing</jtitle><stitle>Circuits Syst Signal Process</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>32</volume><issue>6</issue><spage>3031</spage><epage>3057</epage><pages>3031-3057</pages><issn>0278-081X</issn><eissn>1531-5878</eissn><abstract>This paper studies the performance of a memoryless power amplifier (PA) linearization technique based on a probabilistic approach. This technique employs a nonparametric method to derive a predistorter function, which does not need any parametric modeling and explicit parameter estimation. It only needs to calculate a probabilistic cumulative distribution function (CDF) and a quantile function (an inverse function of the CDF). Histogram and order statistic methods are proposed to perform the calculation. A rigorous analytic formula is derived for the inter-modulation product power (IMPP) of the PA output signal when a finite number of samples as well as a finite number of bins are used to calculate the CDF and the quantile function. The analytic results show that, with the probabilistic-based technique, the IMPP approaches zero as the number of samples approaches infinity and the bin width approaches zero. Computer simulations are utilized to verify the theoretical analysis and to compare the performance of the probabilistic-based linearization technique with those of other memoryless PA linearization techniques, while a prototype experiment is carried out to demonstrate its performance in a practical application. Results show that the technique can accurately determine the predistortion function that effectively compensates for the nonlinearity in the PA, and that it achieves a much better linearization performance compared to other existing methods, especially in the presence of a loop delay in the feedback circuit.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s00034-013-9612-5</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0278-081X
ispartof Circuits, systems, and signal processing, 2013-12, Vol.32 (6), p.3031-3057
issn 0278-081X
1531-5878
language eng
recordid cdi_proquest_miscellaneous_1464604215
source SpringerLink Journals (MCLS)
subjects Circuits and Systems
Electrical Engineering
Electronics and Microelectronics
Engineering
Instrumentation
Linearization
Mathematical analysis
Mathematical models
Probabilistic methods
Probability distribution
Probability theory
Receivers & amplifiers
Samples
Signal processing
Signal,Image and Speech Processing
Statistical analysis
Statistical methods
title Theoretical and Experimental Studies of a Probabilistic-Based Memoryless PA Linearization Technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T19%3A32%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20and%20Experimental%20Studies%20of%20a%20Probabilistic-Based%20Memoryless%20PA%20Linearization%20Technique&rft.jtitle=Circuits,%20systems,%20and%20signal%20processing&rft.au=Zhu,%20Zhiwen&rft.date=2013-12-01&rft.volume=32&rft.issue=6&rft.spage=3031&rft.epage=3057&rft.pages=3031-3057&rft.issn=0278-081X&rft.eissn=1531-5878&rft_id=info:doi/10.1007/s00034-013-9612-5&rft_dat=%3Cproquest_cross%3E1464604215%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1447083312&rft_id=info:pmid/&rfr_iscdi=true