ALOHA: a novel probability fusion approach for scoring multi-parameter drug-likeness during the lead optimization stage of drug discovery

Automated lead optimization helper application (ALOHA) is a novel fitness scoring approach for small molecule lead optimization. ALOHA employs a series of generalized Bayesian models trained from public and proprietary pharmacokinetic, absorption, distribution, metabolism, and excretion, and toxicol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computer-aided molecular design 2013-09, Vol.27 (9), p.771-782
Hauptverfasser: Debe, Derek A., Mamidipaka, Ravindra B., Gregg, Robert J., Metz, James T., Gupta, Rishi R., Muchmore, Steven W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 782
container_issue 9
container_start_page 771
container_title Journal of computer-aided molecular design
container_volume 27
creator Debe, Derek A.
Mamidipaka, Ravindra B.
Gregg, Robert J.
Metz, James T.
Gupta, Rishi R.
Muchmore, Steven W.
description Automated lead optimization helper application (ALOHA) is a novel fitness scoring approach for small molecule lead optimization. ALOHA employs a series of generalized Bayesian models trained from public and proprietary pharmacokinetic, absorption, distribution, metabolism, and excretion, and toxicology data to determine regions of chemical space that are likely to have excellent drug-like properties. The input to ALOHA is a list of molecules, and the output is a set of individual probabilities as well as an overall probability that each of the molecules will pass a panel of user selected assays. In addition to providing a summary of how and when to apply ALOHA, this paper will discuss the validation of ALOHA’s Bayesian models and probability fusion approach. Most notably, ALOHA is demonstrated to discriminate between members of the same chemical series with strong statistical significance, suggesting that ALOHA can be used effectively to select compound candidates for synthesis and progression at the lead optimization stage of drug discovery.
doi_str_mv 10.1007/s10822-013-9679-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1464565053</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1464565053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-b8459b043641e363dbabc564e68763bf3ff81c8b6bce76310135bee51e6fccc83</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhS1ERYfCA7BBltiwMbXjnyTsRlVpkUbqppXYWbZzPXVJ4mAnVYc34K3r6RSEkPDGkvWdc4_vQegdo58YpfVpZrSpKkIZJ62qW_LwAq2YrDkRrWQv0Yq2FSVKim_H6HXOd7RoWkVfoeNKMMZrJVfo13pzdbn-jA0e4z30eErRGhv6MO-wX3KIIzZTeTTuFvuYcHYxhXGLh6WfA5lMMgPMkHCXli3pw3cYIWfcLU_QfAu4B9PhOM1hCD_NvPfLs9kCjv5Jg7tQLO8h7d6gI2_6DG-f7xN08-X8-uySbK4uvp6tN8QJKmdiGyFbSwVXggFXvCtxnVQCVFMrbj33vmGusco6KA-sLEdaAMlAeedcw0_Qx4Nv-dWPBfKshxIB-t6MEJesmVBCKkklL-iHf9C7uKSxpCtUOU0Z2RaKHSiXYs4JvJ5SGEzaaUb1vid96EmXKHrfk34omvfPzosdoPuj-F1MAaoDkKf9KiH9Nfq_ro8dh6CU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1444488769</pqid></control><display><type>article</type><title>ALOHA: a novel probability fusion approach for scoring multi-parameter drug-likeness during the lead optimization stage of drug discovery</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Debe, Derek A. ; Mamidipaka, Ravindra B. ; Gregg, Robert J. ; Metz, James T. ; Gupta, Rishi R. ; Muchmore, Steven W.</creator><creatorcontrib>Debe, Derek A. ; Mamidipaka, Ravindra B. ; Gregg, Robert J. ; Metz, James T. ; Gupta, Rishi R. ; Muchmore, Steven W.</creatorcontrib><description>Automated lead optimization helper application (ALOHA) is a novel fitness scoring approach for small molecule lead optimization. ALOHA employs a series of generalized Bayesian models trained from public and proprietary pharmacokinetic, absorption, distribution, metabolism, and excretion, and toxicology data to determine regions of chemical space that are likely to have excellent drug-like properties. The input to ALOHA is a list of molecules, and the output is a set of individual probabilities as well as an overall probability that each of the molecules will pass a panel of user selected assays. In addition to providing a summary of how and when to apply ALOHA, this paper will discuss the validation of ALOHA’s Bayesian models and probability fusion approach. Most notably, ALOHA is demonstrated to discriminate between members of the same chemical series with strong statistical significance, suggesting that ALOHA can be used effectively to select compound candidates for synthesis and progression at the lead optimization stage of drug discovery.</description><identifier>ISSN: 0920-654X</identifier><identifier>EISSN: 1573-4951</identifier><identifier>DOI: 10.1007/s10822-013-9679-x</identifier><identifier>PMID: 24113765</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algorithms ; Animal Anatomy ; Bayes Theorem ; Blood Proteins - analysis ; CAD ; Cell Survival - drug effects ; Chemical compounds ; Chemistry ; Chemistry and Materials Science ; Computer aided design ; Computer Applications in Chemistry ; Drug Design ; Drug Discovery ; Drug Evaluation, Preclinical ; Hep G2 Cells ; Histology ; Humans ; Molecular structure ; Morphology ; Mutagenicity Tests ; Optimization algorithms ; Pharmaceutical Preparations - analysis ; Pharmaceutical sciences ; Pharmacokinetics ; Physical Chemistry ; Prospective Studies ; Software ; Toxicology</subject><ispartof>Journal of computer-aided molecular design, 2013-09, Vol.27 (9), p.771-782</ispartof><rights>Springer Science+Business Media Dordrecht 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-b8459b043641e363dbabc564e68763bf3ff81c8b6bce76310135bee51e6fccc83</citedby><cites>FETCH-LOGICAL-c405t-b8459b043641e363dbabc564e68763bf3ff81c8b6bce76310135bee51e6fccc83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10822-013-9679-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10822-013-9679-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24113765$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Debe, Derek A.</creatorcontrib><creatorcontrib>Mamidipaka, Ravindra B.</creatorcontrib><creatorcontrib>Gregg, Robert J.</creatorcontrib><creatorcontrib>Metz, James T.</creatorcontrib><creatorcontrib>Gupta, Rishi R.</creatorcontrib><creatorcontrib>Muchmore, Steven W.</creatorcontrib><title>ALOHA: a novel probability fusion approach for scoring multi-parameter drug-likeness during the lead optimization stage of drug discovery</title><title>Journal of computer-aided molecular design</title><addtitle>J Comput Aided Mol Des</addtitle><addtitle>J Comput Aided Mol Des</addtitle><description>Automated lead optimization helper application (ALOHA) is a novel fitness scoring approach for small molecule lead optimization. ALOHA employs a series of generalized Bayesian models trained from public and proprietary pharmacokinetic, absorption, distribution, metabolism, and excretion, and toxicology data to determine regions of chemical space that are likely to have excellent drug-like properties. The input to ALOHA is a list of molecules, and the output is a set of individual probabilities as well as an overall probability that each of the molecules will pass a panel of user selected assays. In addition to providing a summary of how and when to apply ALOHA, this paper will discuss the validation of ALOHA’s Bayesian models and probability fusion approach. Most notably, ALOHA is demonstrated to discriminate between members of the same chemical series with strong statistical significance, suggesting that ALOHA can be used effectively to select compound candidates for synthesis and progression at the lead optimization stage of drug discovery.</description><subject>Algorithms</subject><subject>Animal Anatomy</subject><subject>Bayes Theorem</subject><subject>Blood Proteins - analysis</subject><subject>CAD</subject><subject>Cell Survival - drug effects</subject><subject>Chemical compounds</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computer aided design</subject><subject>Computer Applications in Chemistry</subject><subject>Drug Design</subject><subject>Drug Discovery</subject><subject>Drug Evaluation, Preclinical</subject><subject>Hep G2 Cells</subject><subject>Histology</subject><subject>Humans</subject><subject>Molecular structure</subject><subject>Morphology</subject><subject>Mutagenicity Tests</subject><subject>Optimization algorithms</subject><subject>Pharmaceutical Preparations - analysis</subject><subject>Pharmaceutical sciences</subject><subject>Pharmacokinetics</subject><subject>Physical Chemistry</subject><subject>Prospective Studies</subject><subject>Software</subject><subject>Toxicology</subject><issn>0920-654X</issn><issn>1573-4951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kc1u1DAUhS1ERYfCA7BBltiwMbXjnyTsRlVpkUbqppXYWbZzPXVJ4mAnVYc34K3r6RSEkPDGkvWdc4_vQegdo58YpfVpZrSpKkIZJ62qW_LwAq2YrDkRrWQv0Yq2FSVKim_H6HXOd7RoWkVfoeNKMMZrJVfo13pzdbn-jA0e4z30eErRGhv6MO-wX3KIIzZTeTTuFvuYcHYxhXGLh6WfA5lMMgPMkHCXli3pw3cYIWfcLU_QfAu4B9PhOM1hCD_NvPfLs9kCjv5Jg7tQLO8h7d6gI2_6DG-f7xN08-X8-uySbK4uvp6tN8QJKmdiGyFbSwVXggFXvCtxnVQCVFMrbj33vmGusco6KA-sLEdaAMlAeedcw0_Qx4Nv-dWPBfKshxIB-t6MEJesmVBCKkklL-iHf9C7uKSxpCtUOU0Z2RaKHSiXYs4JvJ5SGEzaaUb1vid96EmXKHrfk34omvfPzosdoPuj-F1MAaoDkKf9KiH9Nfq_ro8dh6CU</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Debe, Derek A.</creator><creator>Mamidipaka, Ravindra B.</creator><creator>Gregg, Robert J.</creator><creator>Metz, James T.</creator><creator>Gupta, Rishi R.</creator><creator>Muchmore, Steven W.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7QO</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20130901</creationdate><title>ALOHA: a novel probability fusion approach for scoring multi-parameter drug-likeness during the lead optimization stage of drug discovery</title><author>Debe, Derek A. ; Mamidipaka, Ravindra B. ; Gregg, Robert J. ; Metz, James T. ; Gupta, Rishi R. ; Muchmore, Steven W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-b8459b043641e363dbabc564e68763bf3ff81c8b6bce76310135bee51e6fccc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Animal Anatomy</topic><topic>Bayes Theorem</topic><topic>Blood Proteins - analysis</topic><topic>CAD</topic><topic>Cell Survival - drug effects</topic><topic>Chemical compounds</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computer aided design</topic><topic>Computer Applications in Chemistry</topic><topic>Drug Design</topic><topic>Drug Discovery</topic><topic>Drug Evaluation, Preclinical</topic><topic>Hep G2 Cells</topic><topic>Histology</topic><topic>Humans</topic><topic>Molecular structure</topic><topic>Morphology</topic><topic>Mutagenicity Tests</topic><topic>Optimization algorithms</topic><topic>Pharmaceutical Preparations - analysis</topic><topic>Pharmaceutical sciences</topic><topic>Pharmacokinetics</topic><topic>Physical Chemistry</topic><topic>Prospective Studies</topic><topic>Software</topic><topic>Toxicology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Debe, Derek A.</creatorcontrib><creatorcontrib>Mamidipaka, Ravindra B.</creatorcontrib><creatorcontrib>Gregg, Robert J.</creatorcontrib><creatorcontrib>Metz, James T.</creatorcontrib><creatorcontrib>Gupta, Rishi R.</creatorcontrib><creatorcontrib>Muchmore, Steven W.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of computer-aided molecular design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Debe, Derek A.</au><au>Mamidipaka, Ravindra B.</au><au>Gregg, Robert J.</au><au>Metz, James T.</au><au>Gupta, Rishi R.</au><au>Muchmore, Steven W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ALOHA: a novel probability fusion approach for scoring multi-parameter drug-likeness during the lead optimization stage of drug discovery</atitle><jtitle>Journal of computer-aided molecular design</jtitle><stitle>J Comput Aided Mol Des</stitle><addtitle>J Comput Aided Mol Des</addtitle><date>2013-09-01</date><risdate>2013</risdate><volume>27</volume><issue>9</issue><spage>771</spage><epage>782</epage><pages>771-782</pages><issn>0920-654X</issn><eissn>1573-4951</eissn><abstract>Automated lead optimization helper application (ALOHA) is a novel fitness scoring approach for small molecule lead optimization. ALOHA employs a series of generalized Bayesian models trained from public and proprietary pharmacokinetic, absorption, distribution, metabolism, and excretion, and toxicology data to determine regions of chemical space that are likely to have excellent drug-like properties. The input to ALOHA is a list of molecules, and the output is a set of individual probabilities as well as an overall probability that each of the molecules will pass a panel of user selected assays. In addition to providing a summary of how and when to apply ALOHA, this paper will discuss the validation of ALOHA’s Bayesian models and probability fusion approach. Most notably, ALOHA is demonstrated to discriminate between members of the same chemical series with strong statistical significance, suggesting that ALOHA can be used effectively to select compound candidates for synthesis and progression at the lead optimization stage of drug discovery.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>24113765</pmid><doi>10.1007/s10822-013-9679-x</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-654X
ispartof Journal of computer-aided molecular design, 2013-09, Vol.27 (9), p.771-782
issn 0920-654X
1573-4951
language eng
recordid cdi_proquest_miscellaneous_1464565053
source MEDLINE; SpringerLink Journals
subjects Algorithms
Animal Anatomy
Bayes Theorem
Blood Proteins - analysis
CAD
Cell Survival - drug effects
Chemical compounds
Chemistry
Chemistry and Materials Science
Computer aided design
Computer Applications in Chemistry
Drug Design
Drug Discovery
Drug Evaluation, Preclinical
Hep G2 Cells
Histology
Humans
Molecular structure
Morphology
Mutagenicity Tests
Optimization algorithms
Pharmaceutical Preparations - analysis
Pharmaceutical sciences
Pharmacokinetics
Physical Chemistry
Prospective Studies
Software
Toxicology
title ALOHA: a novel probability fusion approach for scoring multi-parameter drug-likeness during the lead optimization stage of drug discovery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A26%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ALOHA:%20a%20novel%20probability%20fusion%20approach%20for%20scoring%20multi-parameter%20drug-likeness%20during%20the%20lead%20optimization%20stage%20of%20drug%20discovery&rft.jtitle=Journal%20of%20computer-aided%20molecular%20design&rft.au=Debe,%20Derek%20A.&rft.date=2013-09-01&rft.volume=27&rft.issue=9&rft.spage=771&rft.epage=782&rft.pages=771-782&rft.issn=0920-654X&rft.eissn=1573-4951&rft_id=info:doi/10.1007/s10822-013-9679-x&rft_dat=%3Cproquest_cross%3E1464565053%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1444488769&rft_id=info:pmid/24113765&rfr_iscdi=true