Thermo-mechanical coupling effect on fatigue behavior of cement asphalt mortar

The predicted and literature fatigue life of different materials were approximately distributed around 1:1 diagonal line (no-bias line) with an equal distance, which demonstrate the capability of the proposed model to predict the fatigue life of materials under the coupled thermal mechanical effect....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fatigue 2013-06, Vol.51, p.116-120
Hauptverfasser: Qiu, Kechao, Chen, Huisu, Ye, Haiping, Hong, Jinxiang, Sun, Wei, Jiang, Jinyang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 120
container_issue
container_start_page 116
container_title International journal of fatigue
container_volume 51
creator Qiu, Kechao
Chen, Huisu
Ye, Haiping
Hong, Jinxiang
Sun, Wei
Jiang, Jinyang
description The predicted and literature fatigue life of different materials were approximately distributed around 1:1 diagonal line (no-bias line) with an equal distance, which demonstrate the capability of the proposed model to predict the fatigue life of materials under the coupled thermal mechanical effect. For cement based materials, less temperature sensitivity, predicted results were almost identical to the literature experimental results. However, the proposed model failed to predict the resin–matrix laminates. Apparently, the predicted results are more scatter along with the no-bias line, which means that the proposed model cannot be applied to describe the fatigue behavior of temperature sensitive materials. [Display omitted] ► A thermal–mechanical fatigue model was established for asphalt cement mortar. ► The model was successfully extended to cement based materials. ► The model needs further improvements when application scope is expanded. This contribution first presents a fatigue model to elaborate fatigue behavior of materials subjected to thermal mechanical effect. To calibrate the presented model, a valid experiment is then conducted on cement asphalt mortar. The model can be further extended to other materials and valid experimental data from literature is utilized for verification. Results suggested the model is sufficient to describe thermo-mechanical fatigue behavior of cement-based materials, under the condition that no phase or morphological change occurred in the fatigue temperature range. Finally, the developed model is applied to predict fatigue life of one current track.
doi_str_mv 10.1016/j.ijfatigue.2013.01.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1464563662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0142112313000157</els_id><sourcerecordid>1464563662</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-b89214edb19595dc6a9695d470434f69c40c0cdd1466a478f1fd263ee69be9623</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwDXiDxCZh_IgTLyvES0KwgbXlOmPqKomLnSLx96S0YstqNufeqzmEXDIoGTB1sy7D2tsxfGyx5MBECawEYEdkxppaF0JW_JjMgEleMMbFKTnLeQ0AGupqRl7eVpj6WPToVnYIznbUxe2mC8MHRe_RjTQO9NBPl7iyXyEmGj112OMwUps3K9uNtI9ptOmcnHjbZbw43Dl5v797u30snl8fnm4Xz4UTdTMWy0ZzJrFdMl3pqnXKajVdWYMU0ivtJDhwbcukUlbWjWe-5UogKr1ErbiYk-t97ybFzy3m0fQhO-w6O2DcZjMFZaWE-kXrPepSzDmhN5sUepu-DQOzM2jW5s-g2Rk0wMxkcEpeHUZsnsT4ZAcX8l-c1xxkI8XELfYcTh9_BUwmu4CDwzakSaBpY_h36wc7rIso</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464563662</pqid></control><display><type>article</type><title>Thermo-mechanical coupling effect on fatigue behavior of cement asphalt mortar</title><source>Elsevier ScienceDirect Journals</source><creator>Qiu, Kechao ; Chen, Huisu ; Ye, Haiping ; Hong, Jinxiang ; Sun, Wei ; Jiang, Jinyang</creator><creatorcontrib>Qiu, Kechao ; Chen, Huisu ; Ye, Haiping ; Hong, Jinxiang ; Sun, Wei ; Jiang, Jinyang</creatorcontrib><description>The predicted and literature fatigue life of different materials were approximately distributed around 1:1 diagonal line (no-bias line) with an equal distance, which demonstrate the capability of the proposed model to predict the fatigue life of materials under the coupled thermal mechanical effect. For cement based materials, less temperature sensitivity, predicted results were almost identical to the literature experimental results. However, the proposed model failed to predict the resin–matrix laminates. Apparently, the predicted results are more scatter along with the no-bias line, which means that the proposed model cannot be applied to describe the fatigue behavior of temperature sensitive materials. [Display omitted] ► A thermal–mechanical fatigue model was established for asphalt cement mortar. ► The model was successfully extended to cement based materials. ► The model needs further improvements when application scope is expanded. This contribution first presents a fatigue model to elaborate fatigue behavior of materials subjected to thermal mechanical effect. To calibrate the presented model, a valid experiment is then conducted on cement asphalt mortar. The model can be further extended to other materials and valid experimental data from literature is utilized for verification. Results suggested the model is sufficient to describe thermo-mechanical fatigue behavior of cement-based materials, under the condition that no phase or morphological change occurred in the fatigue temperature range. Finally, the developed model is applied to predict fatigue life of one current track.</description><identifier>ISSN: 0142-1123</identifier><identifier>EISSN: 1879-3452</identifier><identifier>DOI: 10.1016/j.ijfatigue.2013.01.001</identifier><identifier>CODEN: IJFADB</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Asphalt ; CA mortar ; Calibration ; Cements ; Exact sciences and technology ; Fatigue ; Fatigue (materials) ; Fatigue life ; Fatigue model ; Fatigue test ; Joining ; Mathematical models ; Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology ; Metals. Metallurgy ; Mortars ; Thermo-mechanical coupling fatigue</subject><ispartof>International journal of fatigue, 2013-06, Vol.51, p.116-120</ispartof><rights>2013 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-b89214edb19595dc6a9695d470434f69c40c0cdd1466a478f1fd263ee69be9623</citedby><cites>FETCH-LOGICAL-c378t-b89214edb19595dc6a9695d470434f69c40c0cdd1466a478f1fd263ee69be9623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0142112313000157$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27204843$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Qiu, Kechao</creatorcontrib><creatorcontrib>Chen, Huisu</creatorcontrib><creatorcontrib>Ye, Haiping</creatorcontrib><creatorcontrib>Hong, Jinxiang</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>Jiang, Jinyang</creatorcontrib><title>Thermo-mechanical coupling effect on fatigue behavior of cement asphalt mortar</title><title>International journal of fatigue</title><description>The predicted and literature fatigue life of different materials were approximately distributed around 1:1 diagonal line (no-bias line) with an equal distance, which demonstrate the capability of the proposed model to predict the fatigue life of materials under the coupled thermal mechanical effect. For cement based materials, less temperature sensitivity, predicted results were almost identical to the literature experimental results. However, the proposed model failed to predict the resin–matrix laminates. Apparently, the predicted results are more scatter along with the no-bias line, which means that the proposed model cannot be applied to describe the fatigue behavior of temperature sensitive materials. [Display omitted] ► A thermal–mechanical fatigue model was established for asphalt cement mortar. ► The model was successfully extended to cement based materials. ► The model needs further improvements when application scope is expanded. This contribution first presents a fatigue model to elaborate fatigue behavior of materials subjected to thermal mechanical effect. To calibrate the presented model, a valid experiment is then conducted on cement asphalt mortar. The model can be further extended to other materials and valid experimental data from literature is utilized for verification. Results suggested the model is sufficient to describe thermo-mechanical fatigue behavior of cement-based materials, under the condition that no phase or morphological change occurred in the fatigue temperature range. Finally, the developed model is applied to predict fatigue life of one current track.</description><subject>Applied sciences</subject><subject>Asphalt</subject><subject>CA mortar</subject><subject>Calibration</subject><subject>Cements</subject><subject>Exact sciences and technology</subject><subject>Fatigue</subject><subject>Fatigue (materials)</subject><subject>Fatigue life</subject><subject>Fatigue model</subject><subject>Fatigue test</subject><subject>Joining</subject><subject>Mathematical models</subject><subject>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</subject><subject>Metals. Metallurgy</subject><subject>Mortars</subject><subject>Thermo-mechanical coupling fatigue</subject><issn>0142-1123</issn><issn>1879-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwDXiDxCZh_IgTLyvES0KwgbXlOmPqKomLnSLx96S0YstqNufeqzmEXDIoGTB1sy7D2tsxfGyx5MBECawEYEdkxppaF0JW_JjMgEleMMbFKTnLeQ0AGupqRl7eVpj6WPToVnYIznbUxe2mC8MHRe_RjTQO9NBPl7iyXyEmGj112OMwUps3K9uNtI9ptOmcnHjbZbw43Dl5v797u30snl8fnm4Xz4UTdTMWy0ZzJrFdMl3pqnXKajVdWYMU0ivtJDhwbcukUlbWjWe-5UogKr1ErbiYk-t97ybFzy3m0fQhO-w6O2DcZjMFZaWE-kXrPepSzDmhN5sUepu-DQOzM2jW5s-g2Rk0wMxkcEpeHUZsnsT4ZAcX8l-c1xxkI8XELfYcTh9_BUwmu4CDwzakSaBpY_h36wc7rIso</recordid><startdate>20130601</startdate><enddate>20130601</enddate><creator>Qiu, Kechao</creator><creator>Chen, Huisu</creator><creator>Ye, Haiping</creator><creator>Hong, Jinxiang</creator><creator>Sun, Wei</creator><creator>Jiang, Jinyang</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20130601</creationdate><title>Thermo-mechanical coupling effect on fatigue behavior of cement asphalt mortar</title><author>Qiu, Kechao ; Chen, Huisu ; Ye, Haiping ; Hong, Jinxiang ; Sun, Wei ; Jiang, Jinyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-b89214edb19595dc6a9695d470434f69c40c0cdd1466a478f1fd263ee69be9623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Asphalt</topic><topic>CA mortar</topic><topic>Calibration</topic><topic>Cements</topic><topic>Exact sciences and technology</topic><topic>Fatigue</topic><topic>Fatigue (materials)</topic><topic>Fatigue life</topic><topic>Fatigue model</topic><topic>Fatigue test</topic><topic>Joining</topic><topic>Mathematical models</topic><topic>Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology</topic><topic>Metals. Metallurgy</topic><topic>Mortars</topic><topic>Thermo-mechanical coupling fatigue</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Kechao</creatorcontrib><creatorcontrib>Chen, Huisu</creatorcontrib><creatorcontrib>Ye, Haiping</creatorcontrib><creatorcontrib>Hong, Jinxiang</creatorcontrib><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>Jiang, Jinyang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of fatigue</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Kechao</au><au>Chen, Huisu</au><au>Ye, Haiping</au><au>Hong, Jinxiang</au><au>Sun, Wei</au><au>Jiang, Jinyang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermo-mechanical coupling effect on fatigue behavior of cement asphalt mortar</atitle><jtitle>International journal of fatigue</jtitle><date>2013-06-01</date><risdate>2013</risdate><volume>51</volume><spage>116</spage><epage>120</epage><pages>116-120</pages><issn>0142-1123</issn><eissn>1879-3452</eissn><coden>IJFADB</coden><abstract>The predicted and literature fatigue life of different materials were approximately distributed around 1:1 diagonal line (no-bias line) with an equal distance, which demonstrate the capability of the proposed model to predict the fatigue life of materials under the coupled thermal mechanical effect. For cement based materials, less temperature sensitivity, predicted results were almost identical to the literature experimental results. However, the proposed model failed to predict the resin–matrix laminates. Apparently, the predicted results are more scatter along with the no-bias line, which means that the proposed model cannot be applied to describe the fatigue behavior of temperature sensitive materials. [Display omitted] ► A thermal–mechanical fatigue model was established for asphalt cement mortar. ► The model was successfully extended to cement based materials. ► The model needs further improvements when application scope is expanded. This contribution first presents a fatigue model to elaborate fatigue behavior of materials subjected to thermal mechanical effect. To calibrate the presented model, a valid experiment is then conducted on cement asphalt mortar. The model can be further extended to other materials and valid experimental data from literature is utilized for verification. Results suggested the model is sufficient to describe thermo-mechanical fatigue behavior of cement-based materials, under the condition that no phase or morphological change occurred in the fatigue temperature range. Finally, the developed model is applied to predict fatigue life of one current track.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijfatigue.2013.01.001</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-1123
ispartof International journal of fatigue, 2013-06, Vol.51, p.116-120
issn 0142-1123
1879-3452
language eng
recordid cdi_proquest_miscellaneous_1464563662
source Elsevier ScienceDirect Journals
subjects Applied sciences
Asphalt
CA mortar
Calibration
Cements
Exact sciences and technology
Fatigue
Fatigue (materials)
Fatigue life
Fatigue model
Fatigue test
Joining
Mathematical models
Mechanical properties and methods of testing. Rheology. Fracture mechanics. Tribology
Metals. Metallurgy
Mortars
Thermo-mechanical coupling fatigue
title Thermo-mechanical coupling effect on fatigue behavior of cement asphalt mortar
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T07%3A24%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermo-mechanical%20coupling%20effect%20on%20fatigue%20behavior%20of%20cement%20asphalt%20mortar&rft.jtitle=International%20journal%20of%20fatigue&rft.au=Qiu,%20Kechao&rft.date=2013-06-01&rft.volume=51&rft.spage=116&rft.epage=120&rft.pages=116-120&rft.issn=0142-1123&rft.eissn=1879-3452&rft.coden=IJFADB&rft_id=info:doi/10.1016/j.ijfatigue.2013.01.001&rft_dat=%3Cproquest_cross%3E1464563662%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464563662&rft_id=info:pmid/&rft_els_id=S0142112313000157&rfr_iscdi=true