Assessing the Impact of Intervention Delays on Stochastic Epidemics
A stochastic model of disease transmission among a population partitioned into groups is defined. The model is of SEIR (Susceptible-Exposed-Infective-Removed) type and features intervention in response to the progress of the disease, and moreover includes a random delay before the intervention occur...
Gespeichert in:
Veröffentlicht in: | Methodology and computing in applied probability 2013-12, Vol.15 (4), p.803-820 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 820 |
---|---|
container_issue | 4 |
container_start_page | 803 |
container_title | Methodology and computing in applied probability |
container_volume | 15 |
creator | Spencer, Simon Edward Frank O’Neill, Philip D. |
description | A stochastic model of disease transmission among a population partitioned into groups is defined. The model is of SEIR (Susceptible-Exposed-Infective-Removed) type and features intervention in response to the progress of the disease, and moreover includes a random delay before the intervention occurs. A threshold parameter for the model, which can be used to assess the efficacy of the intervention, is defined. The threshold parameter can be calculated either in closed form or via recursion, for a number of different choices of exposed, infectious and delay period distributions, both for the epidemic model itself and also a large-group approximation. In particular both constant and Erlang-distributed delay periods are considered. Sufficient conditions under which a constant delay gives the least effective intervention are presented. For a given mean delay, it is shown that the two-point delay distribution provides the optimal intervention. |
doi_str_mv | 10.1007/s11009-012-9278-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1464561966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3101798121</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-df0794affc3c23fa1060ab0e8ab3b53e358f5e85c5d5543c0c5ec4cd45f8be383</originalsourceid><addsrcrecordid>eNp1kE1LAzEURQdRsFZ_gLsBN25Gk0kyySxLrVoouFDXIZN5aafMl3mp4L83ZVyI4OrdxbmXx0mSa0ruKCHyHmk8ZUZonpW5VJk8SWZUSJZJSdlpzEzJTChOz5MLxD0hORWMz5LlAhEQm36bhh2k6240NqSDS9d9AP8JfWiGPn2A1nxhGtNrGOzOYGhsuhqbGrrG4mVy5kyLcPVz58n74-pt-ZxtXp7Wy8Ums6zMQ1Y7IktunLPM5swZSgpiKgLKVKwSDJhQToASVtRCcGaJFWC5rblwqgKm2Dy5nXZHP3wcAIPuGrTQtqaH4YCa8oKLgpZFEdGbP-h-OPg-fhcpnheEclFGik6U9QOiB6dH33TGf2lK9FGrnrTqqFUftWoZO_nUwcj2W_C_lv8tfQOhdXoO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442601459</pqid></control><display><type>article</type><title>Assessing the Impact of Intervention Delays on Stochastic Epidemics</title><source>Business Source Complete</source><source>SpringerLink Journals - AutoHoldings</source><creator>Spencer, Simon Edward Frank ; O’Neill, Philip D.</creator><creatorcontrib>Spencer, Simon Edward Frank ; O’Neill, Philip D.</creatorcontrib><description>A stochastic model of disease transmission among a population partitioned into groups is defined. The model is of SEIR (Susceptible-Exposed-Infective-Removed) type and features intervention in response to the progress of the disease, and moreover includes a random delay before the intervention occurs. A threshold parameter for the model, which can be used to assess the efficacy of the intervention, is defined. The threshold parameter can be calculated either in closed form or via recursion, for a number of different choices of exposed, infectious and delay period distributions, both for the epidemic model itself and also a large-group approximation. In particular both constant and Erlang-distributed delay periods are considered. Sufficient conditions under which a constant delay gives the least effective intervention are presented. For a given mean delay, it is shown that the two-point delay distribution provides the optimal intervention.</description><identifier>ISSN: 1387-5841</identifier><identifier>EISSN: 1573-7713</identifier><identifier>DOI: 10.1007/s11009-012-9278-7</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Analysis ; Approximation ; Business and Management ; Computer science ; Delay ; Disease control ; Economics ; Effectiveness ; Electrical Engineering ; Epidemics ; Life Sciences ; Mathematical analysis ; Mathematical models ; Mathematics and Statistics ; Statistics ; Stochastic models ; Stochasticity ; Studies ; Thresholds</subject><ispartof>Methodology and computing in applied probability, 2013-12, Vol.15 (4), p.803-820</ispartof><rights>Springer Science+Business Media, LLC 2012</rights><rights>Springer Science+Business Media New York 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-df0794affc3c23fa1060ab0e8ab3b53e358f5e85c5d5543c0c5ec4cd45f8be383</citedby><cites>FETCH-LOGICAL-c392t-df0794affc3c23fa1060ab0e8ab3b53e358f5e85c5d5543c0c5ec4cd45f8be383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11009-012-9278-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11009-012-9278-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Spencer, Simon Edward Frank</creatorcontrib><creatorcontrib>O’Neill, Philip D.</creatorcontrib><title>Assessing the Impact of Intervention Delays on Stochastic Epidemics</title><title>Methodology and computing in applied probability</title><addtitle>Methodol Comput Appl Probab</addtitle><description>A stochastic model of disease transmission among a population partitioned into groups is defined. The model is of SEIR (Susceptible-Exposed-Infective-Removed) type and features intervention in response to the progress of the disease, and moreover includes a random delay before the intervention occurs. A threshold parameter for the model, which can be used to assess the efficacy of the intervention, is defined. The threshold parameter can be calculated either in closed form or via recursion, for a number of different choices of exposed, infectious and delay period distributions, both for the epidemic model itself and also a large-group approximation. In particular both constant and Erlang-distributed delay periods are considered. Sufficient conditions under which a constant delay gives the least effective intervention are presented. For a given mean delay, it is shown that the two-point delay distribution provides the optimal intervention.</description><subject>Analysis</subject><subject>Approximation</subject><subject>Business and Management</subject><subject>Computer science</subject><subject>Delay</subject><subject>Disease control</subject><subject>Economics</subject><subject>Effectiveness</subject><subject>Electrical Engineering</subject><subject>Epidemics</subject><subject>Life Sciences</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics and Statistics</subject><subject>Statistics</subject><subject>Stochastic models</subject><subject>Stochasticity</subject><subject>Studies</subject><subject>Thresholds</subject><issn>1387-5841</issn><issn>1573-7713</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LAzEURQdRsFZ_gLsBN25Gk0kyySxLrVoouFDXIZN5aafMl3mp4L83ZVyI4OrdxbmXx0mSa0ruKCHyHmk8ZUZonpW5VJk8SWZUSJZJSdlpzEzJTChOz5MLxD0hORWMz5LlAhEQm36bhh2k6240NqSDS9d9AP8JfWiGPn2A1nxhGtNrGOzOYGhsuhqbGrrG4mVy5kyLcPVz58n74-pt-ZxtXp7Wy8Ums6zMQ1Y7IktunLPM5swZSgpiKgLKVKwSDJhQToASVtRCcGaJFWC5rblwqgKm2Dy5nXZHP3wcAIPuGrTQtqaH4YCa8oKLgpZFEdGbP-h-OPg-fhcpnheEclFGik6U9QOiB6dH33TGf2lK9FGrnrTqqFUftWoZO_nUwcj2W_C_lv8tfQOhdXoO</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Spencer, Simon Edward Frank</creator><creator>O’Neill, Philip D.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L6V</scope><scope>M0C</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131201</creationdate><title>Assessing the Impact of Intervention Delays on Stochastic Epidemics</title><author>Spencer, Simon Edward Frank ; O’Neill, Philip D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-df0794affc3c23fa1060ab0e8ab3b53e358f5e85c5d5543c0c5ec4cd45f8be383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Analysis</topic><topic>Approximation</topic><topic>Business and Management</topic><topic>Computer science</topic><topic>Delay</topic><topic>Disease control</topic><topic>Economics</topic><topic>Effectiveness</topic><topic>Electrical Engineering</topic><topic>Epidemics</topic><topic>Life Sciences</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics and Statistics</topic><topic>Statistics</topic><topic>Stochastic models</topic><topic>Stochasticity</topic><topic>Studies</topic><topic>Thresholds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spencer, Simon Edward Frank</creatorcontrib><creatorcontrib>O’Neill, Philip D.</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Methodology and computing in applied probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spencer, Simon Edward Frank</au><au>O’Neill, Philip D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing the Impact of Intervention Delays on Stochastic Epidemics</atitle><jtitle>Methodology and computing in applied probability</jtitle><stitle>Methodol Comput Appl Probab</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>15</volume><issue>4</issue><spage>803</spage><epage>820</epage><pages>803-820</pages><issn>1387-5841</issn><eissn>1573-7713</eissn><abstract>A stochastic model of disease transmission among a population partitioned into groups is defined. The model is of SEIR (Susceptible-Exposed-Infective-Removed) type and features intervention in response to the progress of the disease, and moreover includes a random delay before the intervention occurs. A threshold parameter for the model, which can be used to assess the efficacy of the intervention, is defined. The threshold parameter can be calculated either in closed form or via recursion, for a number of different choices of exposed, infectious and delay period distributions, both for the epidemic model itself and also a large-group approximation. In particular both constant and Erlang-distributed delay periods are considered. Sufficient conditions under which a constant delay gives the least effective intervention are presented. For a given mean delay, it is shown that the two-point delay distribution provides the optimal intervention.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11009-012-9278-7</doi><tpages>18</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1387-5841 |
ispartof | Methodology and computing in applied probability, 2013-12, Vol.15 (4), p.803-820 |
issn | 1387-5841 1573-7713 |
language | eng |
recordid | cdi_proquest_miscellaneous_1464561966 |
source | Business Source Complete; SpringerLink Journals - AutoHoldings |
subjects | Analysis Approximation Business and Management Computer science Delay Disease control Economics Effectiveness Electrical Engineering Epidemics Life Sciences Mathematical analysis Mathematical models Mathematics and Statistics Statistics Stochastic models Stochasticity Studies Thresholds |
title | Assessing the Impact of Intervention Delays on Stochastic Epidemics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T22%3A32%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20the%20Impact%20of%20Intervention%20Delays%20on%20Stochastic%20Epidemics&rft.jtitle=Methodology%20and%20computing%20in%20applied%20probability&rft.au=Spencer,%20Simon%20Edward%20Frank&rft.date=2013-12-01&rft.volume=15&rft.issue=4&rft.spage=803&rft.epage=820&rft.pages=803-820&rft.issn=1387-5841&rft.eissn=1573-7713&rft_id=info:doi/10.1007/s11009-012-9278-7&rft_dat=%3Cproquest_cross%3E3101798121%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442601459&rft_id=info:pmid/&rfr_iscdi=true |