Micromechanical modeling of coupled viscoelastic–viscoplastic composites based on an incrementally affine formulation

This study proposes a micromechanical modeling of inclusion-reinforced viscoelastic–viscoplastic composites, based on mean-field approaches. For this, we have generalized the so-called incrementally affine linearization method which was proposed by Doghri et al. (2010a) for elasto-viscoplastic mater...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of solids and structures 2013-05, Vol.50 (10), p.1755-1769
Hauptverfasser: Miled, B., Doghri, I., Brassart, L., Delannay, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1769
container_issue 10
container_start_page 1755
container_title International journal of solids and structures
container_volume 50
creator Miled, B.
Doghri, I.
Brassart, L.
Delannay, L.
description This study proposes a micromechanical modeling of inclusion-reinforced viscoelastic–viscoplastic composites, based on mean-field approaches. For this, we have generalized the so-called incrementally affine linearization method which was proposed by Doghri et al. (2010a) for elasto-viscoplastic materials. The proposal provides an affine relation between stress and strain increments via an algorithmic tangent operator. In order to find the incrementally affine expression, we start by the linearization of evolution equations at the beginning of a time step around the end time of the step. Next, a numerical integration of the linearized equations is required using a fully implicit backward Euler scheme. The obtained algebraic equations lead to an incrementally affine formulation which is form-similar to linear thermoelasticity, therefore known homogenization models for linear thermoelastic composites can be applied. The proposed method can deal with general viscoelastic–viscoplastic constitutive models with an arbitrary number of internal variables. The semi-analytical predictions are validated against finite element simulations and experimental results.
doi_str_mv 10.1016/j.ijsolstr.2013.02.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1464561525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768313000693</els_id><sourcerecordid>1464561525</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-6d57b714864d3ecd4048827d6289aec4703384955b2cac9012dae21c1af55713</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwC8hLNgm2Y-exA1W8pCI23VuuPQFXjh3stIgd_8Af8iWkBNasRlc6czVzEDqnJKeElpeb3G5ScGmIOSO0yAnLCeEHaEbrqskY5eUhmhHCSFaVdXGMTlLakJEoGjJDb49Wx9CBflHeauVwFww4659xaLEO296BwTubdACn0mD118fnT-ynODJdH5IdIOG1SiMcPFYeW68jdOAH5dw7Vm1rPeA2xG7r1GCDP0VHrXIJzn7nHK1ub1aL-2z5dPewuF5mmotmyEojqnVFeV1yU4A2nPC6ZpUpWd0o0LwiRVHzRog100o3hDKjgFFNVStERYs5uphq-xhet5AG2Y3Hg3PKQ9gmOcrhoqSCiREtJ3T0kVKEVvbRdiq-S0rkXrTcyD_Rci9aEib3GufoalqE8Y-dhSiTtuA1GBtBD9IE-1_FNxvLjsk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464561525</pqid></control><display><type>article</type><title>Micromechanical modeling of coupled viscoelastic–viscoplastic composites based on an incrementally affine formulation</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Miled, B. ; Doghri, I. ; Brassart, L. ; Delannay, L.</creator><creatorcontrib>Miled, B. ; Doghri, I. ; Brassart, L. ; Delannay, L.</creatorcontrib><description>This study proposes a micromechanical modeling of inclusion-reinforced viscoelastic–viscoplastic composites, based on mean-field approaches. For this, we have generalized the so-called incrementally affine linearization method which was proposed by Doghri et al. (2010a) for elasto-viscoplastic materials. The proposal provides an affine relation between stress and strain increments via an algorithmic tangent operator. In order to find the incrementally affine expression, we start by the linearization of evolution equations at the beginning of a time step around the end time of the step. Next, a numerical integration of the linearized equations is required using a fully implicit backward Euler scheme. The obtained algebraic equations lead to an incrementally affine formulation which is form-similar to linear thermoelasticity, therefore known homogenization models for linear thermoelastic composites can be applied. The proposed method can deal with general viscoelastic–viscoplastic constitutive models with an arbitrary number of internal variables. The semi-analytical predictions are validated against finite element simulations and experimental results.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2013.02.004</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Computer simulation ; Evolution ; Homogenization ; Homogenizing ; Linearization ; Mathematical analysis ; Mathematical models ; Micromechanics ; Numerical algorithms ; Strain ; Tangents ; Viscoelasticity ; Viscoplasticity</subject><ispartof>International journal of solids and structures, 2013-05, Vol.50 (10), p.1755-1769</ispartof><rights>2013 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-6d57b714864d3ecd4048827d6289aec4703384955b2cac9012dae21c1af55713</citedby><cites>FETCH-LOGICAL-c459t-6d57b714864d3ecd4048827d6289aec4703384955b2cac9012dae21c1af55713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0020768313000693$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Miled, B.</creatorcontrib><creatorcontrib>Doghri, I.</creatorcontrib><creatorcontrib>Brassart, L.</creatorcontrib><creatorcontrib>Delannay, L.</creatorcontrib><title>Micromechanical modeling of coupled viscoelastic–viscoplastic composites based on an incrementally affine formulation</title><title>International journal of solids and structures</title><description>This study proposes a micromechanical modeling of inclusion-reinforced viscoelastic–viscoplastic composites, based on mean-field approaches. For this, we have generalized the so-called incrementally affine linearization method which was proposed by Doghri et al. (2010a) for elasto-viscoplastic materials. The proposal provides an affine relation between stress and strain increments via an algorithmic tangent operator. In order to find the incrementally affine expression, we start by the linearization of evolution equations at the beginning of a time step around the end time of the step. Next, a numerical integration of the linearized equations is required using a fully implicit backward Euler scheme. The obtained algebraic equations lead to an incrementally affine formulation which is form-similar to linear thermoelasticity, therefore known homogenization models for linear thermoelastic composites can be applied. The proposed method can deal with general viscoelastic–viscoplastic constitutive models with an arbitrary number of internal variables. The semi-analytical predictions are validated against finite element simulations and experimental results.</description><subject>Computer simulation</subject><subject>Evolution</subject><subject>Homogenization</subject><subject>Homogenizing</subject><subject>Linearization</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Micromechanics</subject><subject>Numerical algorithms</subject><subject>Strain</subject><subject>Tangents</subject><subject>Viscoelasticity</subject><subject>Viscoplasticity</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwC8hLNgm2Y-exA1W8pCI23VuuPQFXjh3stIgd_8Af8iWkBNasRlc6czVzEDqnJKeElpeb3G5ScGmIOSO0yAnLCeEHaEbrqskY5eUhmhHCSFaVdXGMTlLakJEoGjJDb49Wx9CBflHeauVwFww4659xaLEO296BwTubdACn0mD118fnT-ynODJdH5IdIOG1SiMcPFYeW68jdOAH5dw7Vm1rPeA2xG7r1GCDP0VHrXIJzn7nHK1ub1aL-2z5dPewuF5mmotmyEojqnVFeV1yU4A2nPC6ZpUpWd0o0LwiRVHzRog100o3hDKjgFFNVStERYs5uphq-xhet5AG2Y3Hg3PKQ9gmOcrhoqSCiREtJ3T0kVKEVvbRdiq-S0rkXrTcyD_Rci9aEib3GufoalqE8Y-dhSiTtuA1GBtBD9IE-1_FNxvLjsk</recordid><startdate>20130515</startdate><enddate>20130515</enddate><creator>Miled, B.</creator><creator>Doghri, I.</creator><creator>Brassart, L.</creator><creator>Delannay, L.</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20130515</creationdate><title>Micromechanical modeling of coupled viscoelastic–viscoplastic composites based on an incrementally affine formulation</title><author>Miled, B. ; Doghri, I. ; Brassart, L. ; Delannay, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-6d57b714864d3ecd4048827d6289aec4703384955b2cac9012dae21c1af55713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computer simulation</topic><topic>Evolution</topic><topic>Homogenization</topic><topic>Homogenizing</topic><topic>Linearization</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Micromechanics</topic><topic>Numerical algorithms</topic><topic>Strain</topic><topic>Tangents</topic><topic>Viscoelasticity</topic><topic>Viscoplasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Miled, B.</creatorcontrib><creatorcontrib>Doghri, I.</creatorcontrib><creatorcontrib>Brassart, L.</creatorcontrib><creatorcontrib>Delannay, L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Miled, B.</au><au>Doghri, I.</au><au>Brassart, L.</au><au>Delannay, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Micromechanical modeling of coupled viscoelastic–viscoplastic composites based on an incrementally affine formulation</atitle><jtitle>International journal of solids and structures</jtitle><date>2013-05-15</date><risdate>2013</risdate><volume>50</volume><issue>10</issue><spage>1755</spage><epage>1769</epage><pages>1755-1769</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>This study proposes a micromechanical modeling of inclusion-reinforced viscoelastic–viscoplastic composites, based on mean-field approaches. For this, we have generalized the so-called incrementally affine linearization method which was proposed by Doghri et al. (2010a) for elasto-viscoplastic materials. The proposal provides an affine relation between stress and strain increments via an algorithmic tangent operator. In order to find the incrementally affine expression, we start by the linearization of evolution equations at the beginning of a time step around the end time of the step. Next, a numerical integration of the linearized equations is required using a fully implicit backward Euler scheme. The obtained algebraic equations lead to an incrementally affine formulation which is form-similar to linear thermoelasticity, therefore known homogenization models for linear thermoelastic composites can be applied. The proposed method can deal with general viscoelastic–viscoplastic constitutive models with an arbitrary number of internal variables. The semi-analytical predictions are validated against finite element simulations and experimental results.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2013.02.004</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7683
ispartof International journal of solids and structures, 2013-05, Vol.50 (10), p.1755-1769
issn 0020-7683
1879-2146
language eng
recordid cdi_proquest_miscellaneous_1464561525
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Computer simulation
Evolution
Homogenization
Homogenizing
Linearization
Mathematical analysis
Mathematical models
Micromechanics
Numerical algorithms
Strain
Tangents
Viscoelasticity
Viscoplasticity
title Micromechanical modeling of coupled viscoelastic–viscoplastic composites based on an incrementally affine formulation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A01%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Micromechanical%20modeling%20of%20coupled%20viscoelastic%E2%80%93viscoplastic%20composites%20based%20on%20an%20incrementally%20affine%20formulation&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Miled,%20B.&rft.date=2013-05-15&rft.volume=50&rft.issue=10&rft.spage=1755&rft.epage=1769&rft.pages=1755-1769&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2013.02.004&rft_dat=%3Cproquest_cross%3E1464561525%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464561525&rft_id=info:pmid/&rft_els_id=S0020768313000693&rfr_iscdi=true