All-Solution-Processed InGaO3(ZnO)m Thin Films with Layered Structure
We fabricated the crystallized InGaZnO thin films by sol-gel process and high-temperature annealing at 900°C. Prior to the deposition of the InGaZnO, ZnO buffer layers were also coated by sol-gel process, which was followed by thermal annealing. After the synthesis and annealing of the InGaZnO, the...
Gespeichert in:
Veröffentlicht in: | Journal of nanomaterials 2013, Vol.2013 (2013), p.1-6 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | 2013 |
container_start_page | 1 |
container_title | Journal of nanomaterials |
container_volume | 2013 |
creator | Cho, Hyung Hee Shin, Sangwoo Kim, Jun Hyeon Cho, Sung Woon Cho, Hyung Koun |
description | We fabricated the crystallized InGaZnO thin films by sol-gel process and high-temperature annealing at 900°C. Prior to the deposition of the InGaZnO, ZnO buffer layers were also coated by sol-gel process, which was followed by thermal annealing. After the synthesis and annealing of the InGaZnO, the InGaZnO thin film on the ZnO buffer layer with preferred orientation showed periodic diffraction patterns in the X-ray diffraction, resulting in a superlattice structure. This film consisted of nanosized grains with two phases of InGaO3(ZnO)1 and InGaO3(ZnO)2 in InGaZnO polycrystal. On the other hand, the use of no ZnO buffer layer and randomly oriented ZnO buffer induced the absence of the InGaZnO crystal related patterns. This indicated that the ZnO buffer with high c-axis preferred orientation reduced the critical temperature for the crystallization of the layered InGaZnO. The InGaZnO thin films formed with nanosized grains of two-phase InGaO3(ZnO)m superlattice showed considerably low thermal conductivity (1.14 Wm−1 K−1 at 325 K) due to the phonon scattering from grain boundaries as well as interfaces in the superlattice grain. |
doi_str_mv | 10.1155/2013/909786 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hinda</sourceid><recordid>TN_cdi_proquest_miscellaneous_1464560396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3116120581</sourcerecordid><originalsourceid>FETCH-LOGICAL-e2266-21e09bb4579dc2bc2ada7ed9f9541282d5caa07e9e1b392a1c8a7ef98e908f293</originalsourceid><addsrcrecordid>eNpd0N9LwzAQB_AgCs7pk-9S8GUKdUmapMnjGNscDCZsvvgS0vbKOvpjJi1j__0yKiI-3cF9OO6-CD0S_EYI52OKSTRWWMVSXKEBETIOGaHq-rcn-BbdObfHmHHF6QDNJmUZbpqya4umDj9sk4JzkAXLemHW0eirXr9UwXZX1MG8KCsXHIt2F6zMCaxHm9Z2adtZuEc3uSkdPPzUIfqcz7bT93C1Xiynk1UIlAoRUgJYJQnjscpSmqTUZCaGTOWK-zMlzXhqDI5BAUkiRQ1JpZ_nSoLCMqcqGqJRv_dgm-8OXKurwqVQlqaGpnOaMMG4wJESnj7_o_ums7W_zismsZRCXtRrr_yHmTkW-mCLytiTJlhfEtWXRHWfqMdPPQZPIDd_cEQEYdEZX9tv4g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1448088686</pqid></control><display><type>article</type><title>All-Solution-Processed InGaO3(ZnO)m Thin Films with Layered Structure</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Cho, Hyung Hee ; Shin, Sangwoo ; Kim, Jun Hyeon ; Cho, Sung Woon ; Cho, Hyung Koun</creator><contributor>Park, Chan</contributor><creatorcontrib>Cho, Hyung Hee ; Shin, Sangwoo ; Kim, Jun Hyeon ; Cho, Sung Woon ; Cho, Hyung Koun ; Park, Chan</creatorcontrib><description>We fabricated the crystallized InGaZnO thin films by sol-gel process and high-temperature annealing at 900°C. Prior to the deposition of the InGaZnO, ZnO buffer layers were also coated by sol-gel process, which was followed by thermal annealing. After the synthesis and annealing of the InGaZnO, the InGaZnO thin film on the ZnO buffer layer with preferred orientation showed periodic diffraction patterns in the X-ray diffraction, resulting in a superlattice structure. This film consisted of nanosized grains with two phases of InGaO3(ZnO)1 and InGaO3(ZnO)2 in InGaZnO polycrystal. On the other hand, the use of no ZnO buffer layer and randomly oriented ZnO buffer induced the absence of the InGaZnO crystal related patterns. This indicated that the ZnO buffer with high c-axis preferred orientation reduced the critical temperature for the crystallization of the layered InGaZnO. The InGaZnO thin films formed with nanosized grains of two-phase InGaO3(ZnO)m superlattice showed considerably low thermal conductivity (1.14 Wm−1 K−1 at 325 K) due to the phonon scattering from grain boundaries as well as interfaces in the superlattice grain.</description><identifier>ISSN: 1687-4110</identifier><identifier>EISSN: 1687-4129</identifier><identifier>DOI: 10.1155/2013/909786</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Annealing ; Buffer layers ; Grains ; Nanomaterials ; Nanostructure ; Nitrates ; Solar energy ; Studies ; Superlattices ; Thin films ; Zinc oxide</subject><ispartof>Journal of nanomaterials, 2013, Vol.2013 (2013), p.1-6</ispartof><rights>Copyright © 2013 Sung Woon Cho et al.</rights><rights>Copyright © 2013 Sung Woon Cho et al. Sung Woon Cho et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5309-3798 ; 0000-0002-9452-1426</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><contributor>Park, Chan</contributor><creatorcontrib>Cho, Hyung Hee</creatorcontrib><creatorcontrib>Shin, Sangwoo</creatorcontrib><creatorcontrib>Kim, Jun Hyeon</creatorcontrib><creatorcontrib>Cho, Sung Woon</creatorcontrib><creatorcontrib>Cho, Hyung Koun</creatorcontrib><title>All-Solution-Processed InGaO3(ZnO)m Thin Films with Layered Structure</title><title>Journal of nanomaterials</title><description>We fabricated the crystallized InGaZnO thin films by sol-gel process and high-temperature annealing at 900°C. Prior to the deposition of the InGaZnO, ZnO buffer layers were also coated by sol-gel process, which was followed by thermal annealing. After the synthesis and annealing of the InGaZnO, the InGaZnO thin film on the ZnO buffer layer with preferred orientation showed periodic diffraction patterns in the X-ray diffraction, resulting in a superlattice structure. This film consisted of nanosized grains with two phases of InGaO3(ZnO)1 and InGaO3(ZnO)2 in InGaZnO polycrystal. On the other hand, the use of no ZnO buffer layer and randomly oriented ZnO buffer induced the absence of the InGaZnO crystal related patterns. This indicated that the ZnO buffer with high c-axis preferred orientation reduced the critical temperature for the crystallization of the layered InGaZnO. The InGaZnO thin films formed with nanosized grains of two-phase InGaO3(ZnO)m superlattice showed considerably low thermal conductivity (1.14 Wm−1 K−1 at 325 K) due to the phonon scattering from grain boundaries as well as interfaces in the superlattice grain.</description><subject>Annealing</subject><subject>Buffer layers</subject><subject>Grains</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nitrates</subject><subject>Solar energy</subject><subject>Studies</subject><subject>Superlattices</subject><subject>Thin films</subject><subject>Zinc oxide</subject><issn>1687-4110</issn><issn>1687-4129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNpd0N9LwzAQB_AgCs7pk-9S8GUKdUmapMnjGNscDCZsvvgS0vbKOvpjJi1j__0yKiI-3cF9OO6-CD0S_EYI52OKSTRWWMVSXKEBETIOGaHq-rcn-BbdObfHmHHF6QDNJmUZbpqya4umDj9sk4JzkAXLemHW0eirXr9UwXZX1MG8KCsXHIt2F6zMCaxHm9Z2adtZuEc3uSkdPPzUIfqcz7bT93C1Xiynk1UIlAoRUgJYJQnjscpSmqTUZCaGTOWK-zMlzXhqDI5BAUkiRQ1JpZ_nSoLCMqcqGqJRv_dgm-8OXKurwqVQlqaGpnOaMMG4wJESnj7_o_ums7W_zismsZRCXtRrr_yHmTkW-mCLytiTJlhfEtWXRHWfqMdPPQZPIDd_cEQEYdEZX9tv4g</recordid><startdate>2013</startdate><enddate>2013</enddate><creator>Cho, Hyung Hee</creator><creator>Shin, Sangwoo</creator><creator>Kim, Jun Hyeon</creator><creator>Cho, Sung Woon</creator><creator>Cho, Hyung Koun</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>F28</scope><scope>FR3</scope><orcidid>https://orcid.org/0000-0001-5309-3798</orcidid><orcidid>https://orcid.org/0000-0002-9452-1426</orcidid></search><sort><creationdate>2013</creationdate><title>All-Solution-Processed InGaO3(ZnO)m Thin Films with Layered Structure</title><author>Cho, Hyung Hee ; Shin, Sangwoo ; Kim, Jun Hyeon ; Cho, Sung Woon ; Cho, Hyung Koun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e2266-21e09bb4579dc2bc2ada7ed9f9541282d5caa07e9e1b392a1c8a7ef98e908f293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Annealing</topic><topic>Buffer layers</topic><topic>Grains</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nitrates</topic><topic>Solar energy</topic><topic>Studies</topic><topic>Superlattices</topic><topic>Thin films</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cho, Hyung Hee</creatorcontrib><creatorcontrib>Shin, Sangwoo</creatorcontrib><creatorcontrib>Kim, Jun Hyeon</creatorcontrib><creatorcontrib>Cho, Sung Woon</creatorcontrib><creatorcontrib>Cho, Hyung Koun</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Journal of nanomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Hyung Hee</au><au>Shin, Sangwoo</au><au>Kim, Jun Hyeon</au><au>Cho, Sung Woon</au><au>Cho, Hyung Koun</au><au>Park, Chan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>All-Solution-Processed InGaO3(ZnO)m Thin Films with Layered Structure</atitle><jtitle>Journal of nanomaterials</jtitle><date>2013</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1687-4110</issn><eissn>1687-4129</eissn><abstract>We fabricated the crystallized InGaZnO thin films by sol-gel process and high-temperature annealing at 900°C. Prior to the deposition of the InGaZnO, ZnO buffer layers were also coated by sol-gel process, which was followed by thermal annealing. After the synthesis and annealing of the InGaZnO, the InGaZnO thin film on the ZnO buffer layer with preferred orientation showed periodic diffraction patterns in the X-ray diffraction, resulting in a superlattice structure. This film consisted of nanosized grains with two phases of InGaO3(ZnO)1 and InGaO3(ZnO)2 in InGaZnO polycrystal. On the other hand, the use of no ZnO buffer layer and randomly oriented ZnO buffer induced the absence of the InGaZnO crystal related patterns. This indicated that the ZnO buffer with high c-axis preferred orientation reduced the critical temperature for the crystallization of the layered InGaZnO. The InGaZnO thin films formed with nanosized grains of two-phase InGaO3(ZnO)m superlattice showed considerably low thermal conductivity (1.14 Wm−1 K−1 at 325 K) due to the phonon scattering from grain boundaries as well as interfaces in the superlattice grain.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2013/909786</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-5309-3798</orcidid><orcidid>https://orcid.org/0000-0002-9452-1426</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-4110 |
ispartof | Journal of nanomaterials, 2013, Vol.2013 (2013), p.1-6 |
issn | 1687-4110 1687-4129 |
language | eng |
recordid | cdi_proquest_miscellaneous_1464560396 |
source | Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Annealing Buffer layers Grains Nanomaterials Nanostructure Nitrates Solar energy Studies Superlattices Thin films Zinc oxide |
title | All-Solution-Processed InGaO3(ZnO)m Thin Films with Layered Structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T02%3A53%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hinda&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=All-Solution-Processed%20InGaO3(ZnO)m%20Thin%20Films%20with%20Layered%20Structure&rft.jtitle=Journal%20of%20nanomaterials&rft.au=Cho,%20Hyung%20Hee&rft.date=2013&rft.volume=2013&rft.issue=2013&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1687-4110&rft.eissn=1687-4129&rft_id=info:doi/10.1155/2013/909786&rft_dat=%3Cproquest_hinda%3E3116120581%3C/proquest_hinda%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1448088686&rft_id=info:pmid/&rfr_iscdi=true |