Mesoscopic non-equilibrium thermodynamic analysis of molecular motors

We show that the kinetics of a molecular motor fueled by ATP and operating between a deactivated and an activated state can be derived from the principles of non-equilibrium thermodynamics applied to the mesoscopic domain. The activation by ATP, the possible slip of the motor, as well as the forward...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2013-11, Vol.15 (44), p.19405-19414
Hauptverfasser: KJELSTRUP, S, RUBI, J. M, PAGONABARRAGA, I, BEDEAUX, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19414
container_issue 44
container_start_page 19405
container_title Physical chemistry chemical physics : PCCP
container_volume 15
creator KJELSTRUP, S
RUBI, J. M
PAGONABARRAGA, I
BEDEAUX, D
description We show that the kinetics of a molecular motor fueled by ATP and operating between a deactivated and an activated state can be derived from the principles of non-equilibrium thermodynamics applied to the mesoscopic domain. The activation by ATP, the possible slip of the motor, as well as the forward stepping carrying a load are viewed as slow diffusion along a reaction coordinate. Local equilibrium is assumed in the reaction coordinate spaces, making it possible to derive the non-equilibrium thermodynamic description. Using this scheme, we find expressions for the velocity of the motor, in terms of the driving force along the spacial coordinate, and for the chemical reaction that brings about activation, in terms of the chemical potentials of the reactants and products which maintain the cycle. The second law efficiency is defined, and the velocity corresponding to maximum power is obtained for myosin movement on actin. Experimental results fitting with the description are reviewed, giving a maximum efficiency of 0.45 at a myosin headgroup velocity of 5 × 10(-7) m s(-1). The formalism allows the introduction and test of meso-level models, which may be needed to explain experiments.
doi_str_mv 10.1039/c3cp52339j
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1464560330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1464560330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-d9af0bb9e1ee636659da32de88521463a6d819575bde2594a4113dea0e71dbc93</originalsourceid><addsrcrecordid>eNqN0E1Lw0AQBuBFFKvViz9AchFEiO53skcp9QMqXvQcNrsT3LLJprvNof_elNb26mkG5uFleBG6IfiRYKaeDDO9oIyp5Qm6IFyyXOGSnx72Qk7QZUpLjDERhJ2jCeWEEkrVBZp_QArJhN6ZrAtdDqvBeVdHN7TZ-gdiG-ym0-141Z32m-RSFpqsDR7M4HUct3WI6QqdNdonuN7PKfp-mX_N3vLF5-v77HmRGybwOrdKN7iuFRAAyaQUympGLZSloNtftbQlUaIQtQUqFNecEGZBYyiIrY1iU3S_y-1jWA2Q1lXrkgHvdQdhSNUYwoXEjOF_UM5LUUgsR_qwoyaGlCI0VR9dq-OmIrjaNlwdGx7x7T53qFuwB_pX6Qju9kAno30TdWdcOrqiVHT8j_0CqbeDrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1444857606</pqid></control><display><type>article</type><title>Mesoscopic non-equilibrium thermodynamic analysis of molecular motors</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>KJELSTRUP, S ; RUBI, J. M ; PAGONABARRAGA, I ; BEDEAUX, D</creator><creatorcontrib>KJELSTRUP, S ; RUBI, J. M ; PAGONABARRAGA, I ; BEDEAUX, D</creatorcontrib><description>We show that the kinetics of a molecular motor fueled by ATP and operating between a deactivated and an activated state can be derived from the principles of non-equilibrium thermodynamics applied to the mesoscopic domain. The activation by ATP, the possible slip of the motor, as well as the forward stepping carrying a load are viewed as slow diffusion along a reaction coordinate. Local equilibrium is assumed in the reaction coordinate spaces, making it possible to derive the non-equilibrium thermodynamic description. Using this scheme, we find expressions for the velocity of the motor, in terms of the driving force along the spacial coordinate, and for the chemical reaction that brings about activation, in terms of the chemical potentials of the reactants and products which maintain the cycle. The second law efficiency is defined, and the velocity corresponding to maximum power is obtained for myosin movement on actin. Experimental results fitting with the description are reviewed, giving a maximum efficiency of 0.45 at a myosin headgroup velocity of 5 × 10(-7) m s(-1). The formalism allows the introduction and test of meso-level models, which may be needed to explain experiments.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c3cp52339j</identifier><identifier>PMID: 24121229</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Activation ; Adenosine Triphosphate - metabolism ; ATP ; Chemistry ; Entropy ; Exact sciences and technology ; General and physical chemistry ; Kinetics ; Mathematical models ; Maximum power ; Models, Theoretical ; Molecular motors ; Motors ; Myosin ; Myosins - metabolism ; Thermodynamics</subject><ispartof>Physical chemistry chemical physics : PCCP, 2013-11, Vol.15 (44), p.19405-19414</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-d9af0bb9e1ee636659da32de88521463a6d819575bde2594a4113dea0e71dbc93</citedby><cites>FETCH-LOGICAL-c350t-d9af0bb9e1ee636659da32de88521463a6d819575bde2594a4113dea0e71dbc93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27892303$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24121229$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>KJELSTRUP, S</creatorcontrib><creatorcontrib>RUBI, J. M</creatorcontrib><creatorcontrib>PAGONABARRAGA, I</creatorcontrib><creatorcontrib>BEDEAUX, D</creatorcontrib><title>Mesoscopic non-equilibrium thermodynamic analysis of molecular motors</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>We show that the kinetics of a molecular motor fueled by ATP and operating between a deactivated and an activated state can be derived from the principles of non-equilibrium thermodynamics applied to the mesoscopic domain. The activation by ATP, the possible slip of the motor, as well as the forward stepping carrying a load are viewed as slow diffusion along a reaction coordinate. Local equilibrium is assumed in the reaction coordinate spaces, making it possible to derive the non-equilibrium thermodynamic description. Using this scheme, we find expressions for the velocity of the motor, in terms of the driving force along the spacial coordinate, and for the chemical reaction that brings about activation, in terms of the chemical potentials of the reactants and products which maintain the cycle. The second law efficiency is defined, and the velocity corresponding to maximum power is obtained for myosin movement on actin. Experimental results fitting with the description are reviewed, giving a maximum efficiency of 0.45 at a myosin headgroup velocity of 5 × 10(-7) m s(-1). The formalism allows the introduction and test of meso-level models, which may be needed to explain experiments.</description><subject>Activation</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>ATP</subject><subject>Chemistry</subject><subject>Entropy</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Kinetics</subject><subject>Mathematical models</subject><subject>Maximum power</subject><subject>Models, Theoretical</subject><subject>Molecular motors</subject><subject>Motors</subject><subject>Myosin</subject><subject>Myosins - metabolism</subject><subject>Thermodynamics</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0E1Lw0AQBuBFFKvViz9AchFEiO53skcp9QMqXvQcNrsT3LLJprvNof_elNb26mkG5uFleBG6IfiRYKaeDDO9oIyp5Qm6IFyyXOGSnx72Qk7QZUpLjDERhJ2jCeWEEkrVBZp_QArJhN6ZrAtdDqvBeVdHN7TZ-gdiG-ym0-141Z32m-RSFpqsDR7M4HUct3WI6QqdNdonuN7PKfp-mX_N3vLF5-v77HmRGybwOrdKN7iuFRAAyaQUympGLZSloNtftbQlUaIQtQUqFNecEGZBYyiIrY1iU3S_y-1jWA2Q1lXrkgHvdQdhSNUYwoXEjOF_UM5LUUgsR_qwoyaGlCI0VR9dq-OmIrjaNlwdGx7x7T53qFuwB_pX6Qju9kAno30TdWdcOrqiVHT8j_0CqbeDrA</recordid><startdate>20131128</startdate><enddate>20131128</enddate><creator>KJELSTRUP, S</creator><creator>RUBI, J. M</creator><creator>PAGONABARRAGA, I</creator><creator>BEDEAUX, D</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20131128</creationdate><title>Mesoscopic non-equilibrium thermodynamic analysis of molecular motors</title><author>KJELSTRUP, S ; RUBI, J. M ; PAGONABARRAGA, I ; BEDEAUX, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-d9af0bb9e1ee636659da32de88521463a6d819575bde2594a4113dea0e71dbc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Activation</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>ATP</topic><topic>Chemistry</topic><topic>Entropy</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Kinetics</topic><topic>Mathematical models</topic><topic>Maximum power</topic><topic>Models, Theoretical</topic><topic>Molecular motors</topic><topic>Motors</topic><topic>Myosin</topic><topic>Myosins - metabolism</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KJELSTRUP, S</creatorcontrib><creatorcontrib>RUBI, J. M</creatorcontrib><creatorcontrib>PAGONABARRAGA, I</creatorcontrib><creatorcontrib>BEDEAUX, D</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KJELSTRUP, S</au><au>RUBI, J. M</au><au>PAGONABARRAGA, I</au><au>BEDEAUX, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesoscopic non-equilibrium thermodynamic analysis of molecular motors</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2013-11-28</date><risdate>2013</risdate><volume>15</volume><issue>44</issue><spage>19405</spage><epage>19414</epage><pages>19405-19414</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>We show that the kinetics of a molecular motor fueled by ATP and operating between a deactivated and an activated state can be derived from the principles of non-equilibrium thermodynamics applied to the mesoscopic domain. The activation by ATP, the possible slip of the motor, as well as the forward stepping carrying a load are viewed as slow diffusion along a reaction coordinate. Local equilibrium is assumed in the reaction coordinate spaces, making it possible to derive the non-equilibrium thermodynamic description. Using this scheme, we find expressions for the velocity of the motor, in terms of the driving force along the spacial coordinate, and for the chemical reaction that brings about activation, in terms of the chemical potentials of the reactants and products which maintain the cycle. The second law efficiency is defined, and the velocity corresponding to maximum power is obtained for myosin movement on actin. Experimental results fitting with the description are reviewed, giving a maximum efficiency of 0.45 at a myosin headgroup velocity of 5 × 10(-7) m s(-1). The formalism allows the introduction and test of meso-level models, which may be needed to explain experiments.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>24121229</pmid><doi>10.1039/c3cp52339j</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2013-11, Vol.15 (44), p.19405-19414
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_1464560330
source MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Activation
Adenosine Triphosphate - metabolism
ATP
Chemistry
Entropy
Exact sciences and technology
General and physical chemistry
Kinetics
Mathematical models
Maximum power
Models, Theoretical
Molecular motors
Motors
Myosin
Myosins - metabolism
Thermodynamics
title Mesoscopic non-equilibrium thermodynamic analysis of molecular motors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A54%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesoscopic%20non-equilibrium%20thermodynamic%20analysis%20of%20molecular%20motors&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=KJELSTRUP,%20S&rft.date=2013-11-28&rft.volume=15&rft.issue=44&rft.spage=19405&rft.epage=19414&rft.pages=19405-19414&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c3cp52339j&rft_dat=%3Cproquest_cross%3E1464560330%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1444857606&rft_id=info:pmid/24121229&rfr_iscdi=true