Mesoscopic non-equilibrium thermodynamic analysis of molecular motors
We show that the kinetics of a molecular motor fueled by ATP and operating between a deactivated and an activated state can be derived from the principles of non-equilibrium thermodynamics applied to the mesoscopic domain. The activation by ATP, the possible slip of the motor, as well as the forward...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2013-11, Vol.15 (44), p.19405-19414 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19414 |
---|---|
container_issue | 44 |
container_start_page | 19405 |
container_title | Physical chemistry chemical physics : PCCP |
container_volume | 15 |
creator | KJELSTRUP, S RUBI, J. M PAGONABARRAGA, I BEDEAUX, D |
description | We show that the kinetics of a molecular motor fueled by ATP and operating between a deactivated and an activated state can be derived from the principles of non-equilibrium thermodynamics applied to the mesoscopic domain. The activation by ATP, the possible slip of the motor, as well as the forward stepping carrying a load are viewed as slow diffusion along a reaction coordinate. Local equilibrium is assumed in the reaction coordinate spaces, making it possible to derive the non-equilibrium thermodynamic description. Using this scheme, we find expressions for the velocity of the motor, in terms of the driving force along the spacial coordinate, and for the chemical reaction that brings about activation, in terms of the chemical potentials of the reactants and products which maintain the cycle. The second law efficiency is defined, and the velocity corresponding to maximum power is obtained for myosin movement on actin. Experimental results fitting with the description are reviewed, giving a maximum efficiency of 0.45 at a myosin headgroup velocity of 5 × 10(-7) m s(-1). The formalism allows the introduction and test of meso-level models, which may be needed to explain experiments. |
doi_str_mv | 10.1039/c3cp52339j |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1464560330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1464560330</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-d9af0bb9e1ee636659da32de88521463a6d819575bde2594a4113dea0e71dbc93</originalsourceid><addsrcrecordid>eNqN0E1Lw0AQBuBFFKvViz9AchFEiO53skcp9QMqXvQcNrsT3LLJprvNof_elNb26mkG5uFleBG6IfiRYKaeDDO9oIyp5Qm6IFyyXOGSnx72Qk7QZUpLjDERhJ2jCeWEEkrVBZp_QArJhN6ZrAtdDqvBeVdHN7TZ-gdiG-ym0-141Z32m-RSFpqsDR7M4HUct3WI6QqdNdonuN7PKfp-mX_N3vLF5-v77HmRGybwOrdKN7iuFRAAyaQUympGLZSloNtftbQlUaIQtQUqFNecEGZBYyiIrY1iU3S_y-1jWA2Q1lXrkgHvdQdhSNUYwoXEjOF_UM5LUUgsR_qwoyaGlCI0VR9dq-OmIrjaNlwdGx7x7T53qFuwB_pX6Qju9kAno30TdWdcOrqiVHT8j_0CqbeDrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1444857606</pqid></control><display><type>article</type><title>Mesoscopic non-equilibrium thermodynamic analysis of molecular motors</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>KJELSTRUP, S ; RUBI, J. M ; PAGONABARRAGA, I ; BEDEAUX, D</creator><creatorcontrib>KJELSTRUP, S ; RUBI, J. M ; PAGONABARRAGA, I ; BEDEAUX, D</creatorcontrib><description>We show that the kinetics of a molecular motor fueled by ATP and operating between a deactivated and an activated state can be derived from the principles of non-equilibrium thermodynamics applied to the mesoscopic domain. The activation by ATP, the possible slip of the motor, as well as the forward stepping carrying a load are viewed as slow diffusion along a reaction coordinate. Local equilibrium is assumed in the reaction coordinate spaces, making it possible to derive the non-equilibrium thermodynamic description. Using this scheme, we find expressions for the velocity of the motor, in terms of the driving force along the spacial coordinate, and for the chemical reaction that brings about activation, in terms of the chemical potentials of the reactants and products which maintain the cycle. The second law efficiency is defined, and the velocity corresponding to maximum power is obtained for myosin movement on actin. Experimental results fitting with the description are reviewed, giving a maximum efficiency of 0.45 at a myosin headgroup velocity of 5 × 10(-7) m s(-1). The formalism allows the introduction and test of meso-level models, which may be needed to explain experiments.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c3cp52339j</identifier><identifier>PMID: 24121229</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Activation ; Adenosine Triphosphate - metabolism ; ATP ; Chemistry ; Entropy ; Exact sciences and technology ; General and physical chemistry ; Kinetics ; Mathematical models ; Maximum power ; Models, Theoretical ; Molecular motors ; Motors ; Myosin ; Myosins - metabolism ; Thermodynamics</subject><ispartof>Physical chemistry chemical physics : PCCP, 2013-11, Vol.15 (44), p.19405-19414</ispartof><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-d9af0bb9e1ee636659da32de88521463a6d819575bde2594a4113dea0e71dbc93</citedby><cites>FETCH-LOGICAL-c350t-d9af0bb9e1ee636659da32de88521463a6d819575bde2594a4113dea0e71dbc93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27892303$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24121229$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>KJELSTRUP, S</creatorcontrib><creatorcontrib>RUBI, J. M</creatorcontrib><creatorcontrib>PAGONABARRAGA, I</creatorcontrib><creatorcontrib>BEDEAUX, D</creatorcontrib><title>Mesoscopic non-equilibrium thermodynamic analysis of molecular motors</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>We show that the kinetics of a molecular motor fueled by ATP and operating between a deactivated and an activated state can be derived from the principles of non-equilibrium thermodynamics applied to the mesoscopic domain. The activation by ATP, the possible slip of the motor, as well as the forward stepping carrying a load are viewed as slow diffusion along a reaction coordinate. Local equilibrium is assumed in the reaction coordinate spaces, making it possible to derive the non-equilibrium thermodynamic description. Using this scheme, we find expressions for the velocity of the motor, in terms of the driving force along the spacial coordinate, and for the chemical reaction that brings about activation, in terms of the chemical potentials of the reactants and products which maintain the cycle. The second law efficiency is defined, and the velocity corresponding to maximum power is obtained for myosin movement on actin. Experimental results fitting with the description are reviewed, giving a maximum efficiency of 0.45 at a myosin headgroup velocity of 5 × 10(-7) m s(-1). The formalism allows the introduction and test of meso-level models, which may be needed to explain experiments.</description><subject>Activation</subject><subject>Adenosine Triphosphate - metabolism</subject><subject>ATP</subject><subject>Chemistry</subject><subject>Entropy</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Kinetics</subject><subject>Mathematical models</subject><subject>Maximum power</subject><subject>Models, Theoretical</subject><subject>Molecular motors</subject><subject>Motors</subject><subject>Myosin</subject><subject>Myosins - metabolism</subject><subject>Thermodynamics</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0E1Lw0AQBuBFFKvViz9AchFEiO53skcp9QMqXvQcNrsT3LLJprvNof_elNb26mkG5uFleBG6IfiRYKaeDDO9oIyp5Qm6IFyyXOGSnx72Qk7QZUpLjDERhJ2jCeWEEkrVBZp_QArJhN6ZrAtdDqvBeVdHN7TZ-gdiG-ym0-141Z32m-RSFpqsDR7M4HUct3WI6QqdNdonuN7PKfp-mX_N3vLF5-v77HmRGybwOrdKN7iuFRAAyaQUympGLZSloNtftbQlUaIQtQUqFNecEGZBYyiIrY1iU3S_y-1jWA2Q1lXrkgHvdQdhSNUYwoXEjOF_UM5LUUgsR_qwoyaGlCI0VR9dq-OmIrjaNlwdGx7x7T53qFuwB_pX6Qju9kAno30TdWdcOrqiVHT8j_0CqbeDrA</recordid><startdate>20131128</startdate><enddate>20131128</enddate><creator>KJELSTRUP, S</creator><creator>RUBI, J. M</creator><creator>PAGONABARRAGA, I</creator><creator>BEDEAUX, D</creator><general>Royal Society of Chemistry</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20131128</creationdate><title>Mesoscopic non-equilibrium thermodynamic analysis of molecular motors</title><author>KJELSTRUP, S ; RUBI, J. M ; PAGONABARRAGA, I ; BEDEAUX, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-d9af0bb9e1ee636659da32de88521463a6d819575bde2594a4113dea0e71dbc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Activation</topic><topic>Adenosine Triphosphate - metabolism</topic><topic>ATP</topic><topic>Chemistry</topic><topic>Entropy</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Kinetics</topic><topic>Mathematical models</topic><topic>Maximum power</topic><topic>Models, Theoretical</topic><topic>Molecular motors</topic><topic>Motors</topic><topic>Myosin</topic><topic>Myosins - metabolism</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KJELSTRUP, S</creatorcontrib><creatorcontrib>RUBI, J. M</creatorcontrib><creatorcontrib>PAGONABARRAGA, I</creatorcontrib><creatorcontrib>BEDEAUX, D</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KJELSTRUP, S</au><au>RUBI, J. M</au><au>PAGONABARRAGA, I</au><au>BEDEAUX, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesoscopic non-equilibrium thermodynamic analysis of molecular motors</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2013-11-28</date><risdate>2013</risdate><volume>15</volume><issue>44</issue><spage>19405</spage><epage>19414</epage><pages>19405-19414</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>We show that the kinetics of a molecular motor fueled by ATP and operating between a deactivated and an activated state can be derived from the principles of non-equilibrium thermodynamics applied to the mesoscopic domain. The activation by ATP, the possible slip of the motor, as well as the forward stepping carrying a load are viewed as slow diffusion along a reaction coordinate. Local equilibrium is assumed in the reaction coordinate spaces, making it possible to derive the non-equilibrium thermodynamic description. Using this scheme, we find expressions for the velocity of the motor, in terms of the driving force along the spacial coordinate, and for the chemical reaction that brings about activation, in terms of the chemical potentials of the reactants and products which maintain the cycle. The second law efficiency is defined, and the velocity corresponding to maximum power is obtained for myosin movement on actin. Experimental results fitting with the description are reviewed, giving a maximum efficiency of 0.45 at a myosin headgroup velocity of 5 × 10(-7) m s(-1). The formalism allows the introduction and test of meso-level models, which may be needed to explain experiments.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><pmid>24121229</pmid><doi>10.1039/c3cp52339j</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1463-9076 |
ispartof | Physical chemistry chemical physics : PCCP, 2013-11, Vol.15 (44), p.19405-19414 |
issn | 1463-9076 1463-9084 |
language | eng |
recordid | cdi_proquest_miscellaneous_1464560330 |
source | MEDLINE; Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection |
subjects | Activation Adenosine Triphosphate - metabolism ATP Chemistry Entropy Exact sciences and technology General and physical chemistry Kinetics Mathematical models Maximum power Models, Theoretical Molecular motors Motors Myosin Myosins - metabolism Thermodynamics |
title | Mesoscopic non-equilibrium thermodynamic analysis of molecular motors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T10%3A54%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesoscopic%20non-equilibrium%20thermodynamic%20analysis%20of%20molecular%20motors&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=KJELSTRUP,%20S&rft.date=2013-11-28&rft.volume=15&rft.issue=44&rft.spage=19405&rft.epage=19414&rft.pages=19405-19414&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c3cp52339j&rft_dat=%3Cproquest_cross%3E1464560330%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1444857606&rft_id=info:pmid/24121229&rfr_iscdi=true |