More about residual values

The usual residual values are complemented by expectation values based solely on the experimental data and the number of model parameters. These theoretical R values serve as benchmark values when all of the basic assumptions for a least‐squares refinement, i.e. no systematic errors and a fully adeq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta crystallographica. Section A, Foundations of crystallography Foundations of crystallography, 2013-11, Vol.69 (6), p.549-558
Hauptverfasser: Henn, Julian, Schönleber, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 558
container_issue 6
container_start_page 549
container_title Acta crystallographica. Section A, Foundations of crystallography
container_volume 69
creator Henn, Julian
Schönleber, Andreas
description The usual residual values are complemented by expectation values based solely on the experimental data and the number of model parameters. These theoretical R values serve as benchmark values when all of the basic assumptions for a least‐squares refinement, i.e. no systematic errors and a fully adequate model capable of describing the data, are fulfilled. The prediction of R values as presented here is applicable to any field where model parameters are fitted to data with known precision. For crystallographic applications, F 2‐based residual benchmark values are given. They depend on the first and second moments of variance, intensity and significance distributions, 〈σ2〉, 〈I o 2〉, 〈I o 2/σ2〉. Possible applications of the theoretical R values are, for example, as a data‐quality measure or the detection of systematic deviations between experimental data and model predicted data, although the theoretical R values cannot identify the origin of these systematic deviations. The change in R values due to application of a weighting scheme is quantified with the theoretical R values.
doi_str_mv 10.1107/S0108767313022514
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1464559980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3101425881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4490-858a7ac007230c9f7c17abfebf1985b1e844c8f1fd124c533c49d0f621d29dce3</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhi0EglL4ATCgSiwsgTt_xPFYKiiIAkKAgMlyHEcKpA3YDdB_T6KWDjDA5OGe5z3fS8gOwiEiyKNbQEhkLBkyoFQgXyEdjAEiISlfJZ12HLXzDbIZwjMAIENYJxuUI6MU4w7Zvay865m0qqc970KR1absvZuydmGLrOWmDG578XbJ_enJ3eAsGl0Pzwf9UWQ5VxAlIjHSWABJGViVS4vSpLlLc1SJSNElnNskxzxDyq1gzHKVQR5TzKjKrGNdcjDPffXVW7N3qsdFsK4szcRVddDIYy6EUgn8A-VMKa4Yb9D9H-hzVftJc0hLUUEphzYQ55T1VQje5frVF2PjZxpBtx3rXx03zt4iuU7HLlsa36U2QDIHPorSzf5O1P2n_sWjANr-J5qrRZi6z6Vq_ItuBCn0w9VQD8TwJj4-BR2zL-U1kYM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442522400</pqid></control><display><type>article</type><title>More about residual values</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Henn, Julian ; Schönleber, Andreas</creator><creatorcontrib>Henn, Julian ; Schönleber, Andreas</creatorcontrib><description>The usual residual values are complemented by expectation values based solely on the experimental data and the number of model parameters. These theoretical R values serve as benchmark values when all of the basic assumptions for a least‐squares refinement, i.e. no systematic errors and a fully adequate model capable of describing the data, are fulfilled. The prediction of R values as presented here is applicable to any field where model parameters are fitted to data with known precision. For crystallographic applications, F 2‐based residual benchmark values are given. They depend on the first and second moments of variance, intensity and significance distributions, 〈σ2〉, 〈I o 2〉, 〈I o 2/σ2〉. Possible applications of the theoretical R values are, for example, as a data‐quality measure or the detection of systematic deviations between experimental data and model predicted data, although the theoretical R values cannot identify the origin of these systematic deviations. The change in R values due to application of a weighting scheme is quantified with the theoretical R values.</description><identifier>ISSN: 0108-7673</identifier><identifier>EISSN: 1600-5724</identifier><identifier>EISSN: 2053-2733</identifier><identifier>DOI: 10.1107/S0108767313022514</identifier><identifier>PMID: 24132216</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Benchmarking ; Crystallography ; data-quality indicators ; Deviation ; Experimental data ; fit-quality indicators ; Least squares method ; Mathematical models ; Origins ; quality indicators ; Systematic errors ; theoretical residual values ; Value analysis ; Weighting</subject><ispartof>Acta crystallographica. Section A, Foundations of crystallography, 2013-11, Vol.69 (6), p.549-558</ispartof><rights>International Union of Crystallography, 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4490-858a7ac007230c9f7c17abfebf1985b1e844c8f1fd124c533c49d0f621d29dce3</citedby><cites>FETCH-LOGICAL-c4490-858a7ac007230c9f7c17abfebf1985b1e844c8f1fd124c533c49d0f621d29dce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS0108767313022514$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS0108767313022514$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24132216$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Henn, Julian</creatorcontrib><creatorcontrib>Schönleber, Andreas</creatorcontrib><title>More about residual values</title><title>Acta crystallographica. Section A, Foundations of crystallography</title><addtitle>Acta Cryst. A</addtitle><description>The usual residual values are complemented by expectation values based solely on the experimental data and the number of model parameters. These theoretical R values serve as benchmark values when all of the basic assumptions for a least‐squares refinement, i.e. no systematic errors and a fully adequate model capable of describing the data, are fulfilled. The prediction of R values as presented here is applicable to any field where model parameters are fitted to data with known precision. For crystallographic applications, F 2‐based residual benchmark values are given. They depend on the first and second moments of variance, intensity and significance distributions, 〈σ2〉, 〈I o 2〉, 〈I o 2/σ2〉. Possible applications of the theoretical R values are, for example, as a data‐quality measure or the detection of systematic deviations between experimental data and model predicted data, although the theoretical R values cannot identify the origin of these systematic deviations. The change in R values due to application of a weighting scheme is quantified with the theoretical R values.</description><subject>Benchmarking</subject><subject>Crystallography</subject><subject>data-quality indicators</subject><subject>Deviation</subject><subject>Experimental data</subject><subject>fit-quality indicators</subject><subject>Least squares method</subject><subject>Mathematical models</subject><subject>Origins</subject><subject>quality indicators</subject><subject>Systematic errors</subject><subject>theoretical residual values</subject><subject>Value analysis</subject><subject>Weighting</subject><issn>0108-7673</issn><issn>1600-5724</issn><issn>2053-2733</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAQhi0EglL4ATCgSiwsgTt_xPFYKiiIAkKAgMlyHEcKpA3YDdB_T6KWDjDA5OGe5z3fS8gOwiEiyKNbQEhkLBkyoFQgXyEdjAEiISlfJZ12HLXzDbIZwjMAIENYJxuUI6MU4w7Zvay865m0qqc970KR1absvZuydmGLrOWmDG578XbJ_enJ3eAsGl0Pzwf9UWQ5VxAlIjHSWABJGViVS4vSpLlLc1SJSNElnNskxzxDyq1gzHKVQR5TzKjKrGNdcjDPffXVW7N3qsdFsK4szcRVddDIYy6EUgn8A-VMKa4Yb9D9H-hzVftJc0hLUUEphzYQ55T1VQje5frVF2PjZxpBtx3rXx03zt4iuU7HLlsa36U2QDIHPorSzf5O1P2n_sWjANr-J5qrRZi6z6Vq_ItuBCn0w9VQD8TwJj4-BR2zL-U1kYM</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Henn, Julian</creator><creator>Schönleber, Andreas</creator><general>International Union of Crystallography</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20131101</creationdate><title>More about residual values</title><author>Henn, Julian ; Schönleber, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4490-858a7ac007230c9f7c17abfebf1985b1e844c8f1fd124c533c49d0f621d29dce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Benchmarking</topic><topic>Crystallography</topic><topic>data-quality indicators</topic><topic>Deviation</topic><topic>Experimental data</topic><topic>fit-quality indicators</topic><topic>Least squares method</topic><topic>Mathematical models</topic><topic>Origins</topic><topic>quality indicators</topic><topic>Systematic errors</topic><topic>theoretical residual values</topic><topic>Value analysis</topic><topic>Weighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henn, Julian</creatorcontrib><creatorcontrib>Schönleber, Andreas</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Acta crystallographica. Section A, Foundations of crystallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Henn, Julian</au><au>Schönleber, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>More about residual values</atitle><jtitle>Acta crystallographica. Section A, Foundations of crystallography</jtitle><addtitle>Acta Cryst. A</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>69</volume><issue>6</issue><spage>549</spage><epage>558</epage><pages>549-558</pages><issn>0108-7673</issn><eissn>1600-5724</eissn><eissn>2053-2733</eissn><abstract>The usual residual values are complemented by expectation values based solely on the experimental data and the number of model parameters. These theoretical R values serve as benchmark values when all of the basic assumptions for a least‐squares refinement, i.e. no systematic errors and a fully adequate model capable of describing the data, are fulfilled. The prediction of R values as presented here is applicable to any field where model parameters are fitted to data with known precision. For crystallographic applications, F 2‐based residual benchmark values are given. They depend on the first and second moments of variance, intensity and significance distributions, 〈σ2〉, 〈I o 2〉, 〈I o 2/σ2〉. Possible applications of the theoretical R values are, for example, as a data‐quality measure or the detection of systematic deviations between experimental data and model predicted data, although the theoretical R values cannot identify the origin of these systematic deviations. The change in R values due to application of a weighting scheme is quantified with the theoretical R values.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>24132216</pmid><doi>10.1107/S0108767313022514</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0108-7673
ispartof Acta crystallographica. Section A, Foundations of crystallography, 2013-11, Vol.69 (6), p.549-558
issn 0108-7673
1600-5724
2053-2733
language eng
recordid cdi_proquest_miscellaneous_1464559980
source Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects Benchmarking
Crystallography
data-quality indicators
Deviation
Experimental data
fit-quality indicators
Least squares method
Mathematical models
Origins
quality indicators
Systematic errors
theoretical residual values
Value analysis
Weighting
title More about residual values
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A09%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=More%20about%20residual%20values&rft.jtitle=Acta%20crystallographica.%20Section%20A,%20Foundations%20of%20crystallography&rft.au=Henn,%20Julian&rft.date=2013-11-01&rft.volume=69&rft.issue=6&rft.spage=549&rft.epage=558&rft.pages=549-558&rft.issn=0108-7673&rft.eissn=1600-5724&rft_id=info:doi/10.1107/S0108767313022514&rft_dat=%3Cproquest_cross%3E3101425881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442522400&rft_id=info:pmid/24132216&rfr_iscdi=true