More about residual values
The usual residual values are complemented by expectation values based solely on the experimental data and the number of model parameters. These theoretical R values serve as benchmark values when all of the basic assumptions for a least‐squares refinement, i.e. no systematic errors and a fully adeq...
Gespeichert in:
Veröffentlicht in: | Acta crystallographica. Section A, Foundations of crystallography Foundations of crystallography, 2013-11, Vol.69 (6), p.549-558 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 558 |
---|---|
container_issue | 6 |
container_start_page | 549 |
container_title | Acta crystallographica. Section A, Foundations of crystallography |
container_volume | 69 |
creator | Henn, Julian Schönleber, Andreas |
description | The usual residual values are complemented by expectation values based solely on the experimental data and the number of model parameters. These theoretical R values serve as benchmark values when all of the basic assumptions for a least‐squares refinement, i.e. no systematic errors and a fully adequate model capable of describing the data, are fulfilled. The prediction of R values as presented here is applicable to any field where model parameters are fitted to data with known precision. For crystallographic applications, F
2‐based residual benchmark values are given. They depend on the first and second moments of variance, intensity and significance distributions, 〈σ2〉, 〈I
o
2〉, 〈I
o
2/σ2〉. Possible applications of the theoretical R values are, for example, as a data‐quality measure or the detection of systematic deviations between experimental data and model predicted data, although the theoretical R values cannot identify the origin of these systematic deviations. The change in R values due to application of a weighting scheme is quantified with the theoretical R values. |
doi_str_mv | 10.1107/S0108767313022514 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1464559980</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3101425881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4490-858a7ac007230c9f7c17abfebf1985b1e844c8f1fd124c533c49d0f621d29dce3</originalsourceid><addsrcrecordid>eNqNkD1PwzAQhi0EglL4ATCgSiwsgTt_xPFYKiiIAkKAgMlyHEcKpA3YDdB_T6KWDjDA5OGe5z3fS8gOwiEiyKNbQEhkLBkyoFQgXyEdjAEiISlfJZ12HLXzDbIZwjMAIENYJxuUI6MU4w7Zvay865m0qqc970KR1absvZuydmGLrOWmDG578XbJ_enJ3eAsGl0Pzwf9UWQ5VxAlIjHSWABJGViVS4vSpLlLc1SJSNElnNskxzxDyq1gzHKVQR5TzKjKrGNdcjDPffXVW7N3qsdFsK4szcRVddDIYy6EUgn8A-VMKa4Yb9D9H-hzVftJc0hLUUEphzYQ55T1VQje5frVF2PjZxpBtx3rXx03zt4iuU7HLlsa36U2QDIHPorSzf5O1P2n_sWjANr-J5qrRZi6z6Vq_ItuBCn0w9VQD8TwJj4-BR2zL-U1kYM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442522400</pqid></control><display><type>article</type><title>More about residual values</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Henn, Julian ; Schönleber, Andreas</creator><creatorcontrib>Henn, Julian ; Schönleber, Andreas</creatorcontrib><description>The usual residual values are complemented by expectation values based solely on the experimental data and the number of model parameters. These theoretical R values serve as benchmark values when all of the basic assumptions for a least‐squares refinement, i.e. no systematic errors and a fully adequate model capable of describing the data, are fulfilled. The prediction of R values as presented here is applicable to any field where model parameters are fitted to data with known precision. For crystallographic applications, F
2‐based residual benchmark values are given. They depend on the first and second moments of variance, intensity and significance distributions, 〈σ2〉, 〈I
o
2〉, 〈I
o
2/σ2〉. Possible applications of the theoretical R values are, for example, as a data‐quality measure or the detection of systematic deviations between experimental data and model predicted data, although the theoretical R values cannot identify the origin of these systematic deviations. The change in R values due to application of a weighting scheme is quantified with the theoretical R values.</description><identifier>ISSN: 0108-7673</identifier><identifier>EISSN: 1600-5724</identifier><identifier>EISSN: 2053-2733</identifier><identifier>DOI: 10.1107/S0108767313022514</identifier><identifier>PMID: 24132216</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>Benchmarking ; Crystallography ; data-quality indicators ; Deviation ; Experimental data ; fit-quality indicators ; Least squares method ; Mathematical models ; Origins ; quality indicators ; Systematic errors ; theoretical residual values ; Value analysis ; Weighting</subject><ispartof>Acta crystallographica. Section A, Foundations of crystallography, 2013-11, Vol.69 (6), p.549-558</ispartof><rights>International Union of Crystallography, 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4490-858a7ac007230c9f7c17abfebf1985b1e844c8f1fd124c533c49d0f621d29dce3</citedby><cites>FETCH-LOGICAL-c4490-858a7ac007230c9f7c17abfebf1985b1e844c8f1fd124c533c49d0f621d29dce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS0108767313022514$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS0108767313022514$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24132216$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Henn, Julian</creatorcontrib><creatorcontrib>Schönleber, Andreas</creatorcontrib><title>More about residual values</title><title>Acta crystallographica. Section A, Foundations of crystallography</title><addtitle>Acta Cryst. A</addtitle><description>The usual residual values are complemented by expectation values based solely on the experimental data and the number of model parameters. These theoretical R values serve as benchmark values when all of the basic assumptions for a least‐squares refinement, i.e. no systematic errors and a fully adequate model capable of describing the data, are fulfilled. The prediction of R values as presented here is applicable to any field where model parameters are fitted to data with known precision. For crystallographic applications, F
2‐based residual benchmark values are given. They depend on the first and second moments of variance, intensity and significance distributions, 〈σ2〉, 〈I
o
2〉, 〈I
o
2/σ2〉. Possible applications of the theoretical R values are, for example, as a data‐quality measure or the detection of systematic deviations between experimental data and model predicted data, although the theoretical R values cannot identify the origin of these systematic deviations. The change in R values due to application of a weighting scheme is quantified with the theoretical R values.</description><subject>Benchmarking</subject><subject>Crystallography</subject><subject>data-quality indicators</subject><subject>Deviation</subject><subject>Experimental data</subject><subject>fit-quality indicators</subject><subject>Least squares method</subject><subject>Mathematical models</subject><subject>Origins</subject><subject>quality indicators</subject><subject>Systematic errors</subject><subject>theoretical residual values</subject><subject>Value analysis</subject><subject>Weighting</subject><issn>0108-7673</issn><issn>1600-5724</issn><issn>2053-2733</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkD1PwzAQhi0EglL4ATCgSiwsgTt_xPFYKiiIAkKAgMlyHEcKpA3YDdB_T6KWDjDA5OGe5z3fS8gOwiEiyKNbQEhkLBkyoFQgXyEdjAEiISlfJZ12HLXzDbIZwjMAIENYJxuUI6MU4w7Zvay865m0qqc970KR1absvZuydmGLrOWmDG578XbJ_enJ3eAsGl0Pzwf9UWQ5VxAlIjHSWABJGViVS4vSpLlLc1SJSNElnNskxzxDyq1gzHKVQR5TzKjKrGNdcjDPffXVW7N3qsdFsK4szcRVddDIYy6EUgn8A-VMKa4Yb9D9H-hzVftJc0hLUUEphzYQ55T1VQje5frVF2PjZxpBtx3rXx03zt4iuU7HLlsa36U2QDIHPorSzf5O1P2n_sWjANr-J5qrRZi6z6Vq_ItuBCn0w9VQD8TwJj4-BR2zL-U1kYM</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Henn, Julian</creator><creator>Schönleber, Andreas</creator><general>International Union of Crystallography</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20131101</creationdate><title>More about residual values</title><author>Henn, Julian ; Schönleber, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4490-858a7ac007230c9f7c17abfebf1985b1e844c8f1fd124c533c49d0f621d29dce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Benchmarking</topic><topic>Crystallography</topic><topic>data-quality indicators</topic><topic>Deviation</topic><topic>Experimental data</topic><topic>fit-quality indicators</topic><topic>Least squares method</topic><topic>Mathematical models</topic><topic>Origins</topic><topic>quality indicators</topic><topic>Systematic errors</topic><topic>theoretical residual values</topic><topic>Value analysis</topic><topic>Weighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henn, Julian</creatorcontrib><creatorcontrib>Schönleber, Andreas</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Acta crystallographica. Section A, Foundations of crystallography</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Henn, Julian</au><au>Schönleber, Andreas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>More about residual values</atitle><jtitle>Acta crystallographica. Section A, Foundations of crystallography</jtitle><addtitle>Acta Cryst. A</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>69</volume><issue>6</issue><spage>549</spage><epage>558</epage><pages>549-558</pages><issn>0108-7673</issn><eissn>1600-5724</eissn><eissn>2053-2733</eissn><abstract>The usual residual values are complemented by expectation values based solely on the experimental data and the number of model parameters. These theoretical R values serve as benchmark values when all of the basic assumptions for a least‐squares refinement, i.e. no systematic errors and a fully adequate model capable of describing the data, are fulfilled. The prediction of R values as presented here is applicable to any field where model parameters are fitted to data with known precision. For crystallographic applications, F
2‐based residual benchmark values are given. They depend on the first and second moments of variance, intensity and significance distributions, 〈σ2〉, 〈I
o
2〉, 〈I
o
2/σ2〉. Possible applications of the theoretical R values are, for example, as a data‐quality measure or the detection of systematic deviations between experimental data and model predicted data, although the theoretical R values cannot identify the origin of these systematic deviations. The change in R values due to application of a weighting scheme is quantified with the theoretical R values.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>24132216</pmid><doi>10.1107/S0108767313022514</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0108-7673 |
ispartof | Acta crystallographica. Section A, Foundations of crystallography, 2013-11, Vol.69 (6), p.549-558 |
issn | 0108-7673 1600-5724 2053-2733 |
language | eng |
recordid | cdi_proquest_miscellaneous_1464559980 |
source | Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection |
subjects | Benchmarking Crystallography data-quality indicators Deviation Experimental data fit-quality indicators Least squares method Mathematical models Origins quality indicators Systematic errors theoretical residual values Value analysis Weighting |
title | More about residual values |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T11%3A09%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=More%20about%20residual%20values&rft.jtitle=Acta%20crystallographica.%20Section%20A,%20Foundations%20of%20crystallography&rft.au=Henn,%20Julian&rft.date=2013-11-01&rft.volume=69&rft.issue=6&rft.spage=549&rft.epage=558&rft.pages=549-558&rft.issn=0108-7673&rft.eissn=1600-5724&rft_id=info:doi/10.1107/S0108767313022514&rft_dat=%3Cproquest_cross%3E3101425881%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442522400&rft_id=info:pmid/24132216&rfr_iscdi=true |