Magnetic nanostructures for non-volatile memories

•Two methods were used to fabricate submicron nanomagnets.•Magnets prepared by lift-off had vertical sidewalls without fencing features.•The nanomagnet mask pattern was optimized for ion-milling etch.•Angular dependence of the ground state was calculated by micromagnetic simulation.•The state of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microelectronic engineering 2013-10, Vol.110, p.474-478
Hauptverfasser: Šoltýs, J., Gaži, Š., Fedor, J., Tóbik, J., Precner, M., Cambel, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 478
container_issue
container_start_page 474
container_title Microelectronic engineering
container_volume 110
creator Šoltýs, J.
Gaži, Š.
Fedor, J.
Tóbik, J.
Precner, M.
Cambel, V.
description •Two methods were used to fabricate submicron nanomagnets.•Magnets prepared by lift-off had vertical sidewalls without fencing features.•The nanomagnet mask pattern was optimized for ion-milling etch.•Angular dependence of the ground state was calculated by micromagnetic simulation.•The state of the nanomagnet is controlled by field direction. In this work we present two fabrication approaches for patterning submicron Pacman-like (PL) magnetic nanoelements, the additive and subtractive process. Within the first process, PL structures are revealed using a standard lift-off technique. The second one is based on argon ion milling through titanium mask patterns. In the PL magnet the missing sector itself represents a dipole, which together with the external field, controls the chirality of the nucleated vortex. In order to determine the chirality of the vortex ground state, an array of PL nanomagnets of the diameter 200nm prepared by the subtractive process, is mapped by the magnetic force microscopy. The experimental results are in good agreement with the results achieved by the micromagnetic simulations.
doi_str_mv 10.1016/j.mee.2013.04.031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1464559644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167931713004541</els_id><sourcerecordid>1464559644</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-2874b44a49a0d7f244839b6e7843dc180853b9338f9d56bf92494d6d939cc1313</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoWEd_gLsu3bQmzWua4EoGv2DEja5Dmr5KhrYZk3TAf2_Hce3qceHcC-8Qcs1oySgTt9tyRCwrynhJoaScnZCMyYYXdS3kKckWpikUZ805uYhxS5cMVGaEvZrPCZOz-WQmH1OYbZoDxrz3IZ_8VOz9YJIbMB9x9MFhvCRnvRkiXv3dFfl4fHhfPxebt6eX9f2msJzTVFSygRbAgDK0a_oKQHLVCmwk8M4ySWXNW8W57FVXi7ZXFSjoRKe4spZxxlfk5ri7C_5rxpj06KLFYTAT-jlqBgLqWgmABWVH1AYfY8Be74IbTfjWjOqDHr3Vix590KMpaPo7f3fs4PLD3mHQ0TqcLHYuoE268-6f9g9y4mvt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464559644</pqid></control><display><type>article</type><title>Magnetic nanostructures for non-volatile memories</title><source>Elsevier ScienceDirect Journals</source><creator>Šoltýs, J. ; Gaži, Š. ; Fedor, J. ; Tóbik, J. ; Precner, M. ; Cambel, V.</creator><creatorcontrib>Šoltýs, J. ; Gaži, Š. ; Fedor, J. ; Tóbik, J. ; Precner, M. ; Cambel, V.</creatorcontrib><description>•Two methods were used to fabricate submicron nanomagnets.•Magnets prepared by lift-off had vertical sidewalls without fencing features.•The nanomagnet mask pattern was optimized for ion-milling etch.•Angular dependence of the ground state was calculated by micromagnetic simulation.•The state of the nanomagnet is controlled by field direction. In this work we present two fabrication approaches for patterning submicron Pacman-like (PL) magnetic nanoelements, the additive and subtractive process. Within the first process, PL structures are revealed using a standard lift-off technique. The second one is based on argon ion milling through titanium mask patterns. In the PL magnet the missing sector itself represents a dipole, which together with the external field, controls the chirality of the nucleated vortex. In order to determine the chirality of the vortex ground state, an array of PL nanomagnets of the diameter 200nm prepared by the subtractive process, is mapped by the magnetic force microscopy. The experimental results are in good agreement with the results achieved by the micromagnetic simulations.</description><identifier>ISSN: 0167-9317</identifier><identifier>EISSN: 1873-5568</identifier><identifier>DOI: 10.1016/j.mee.2013.04.031</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Arrays ; Bit patterned media ; Chirality ; Domain structure ; Electron beam lithography ; Fabrication of magnetic nanostructures ; Fluid flow ; Ground state ; Micromagnetism ; Nanocomposites ; Nanomaterials ; Nanostructure ; Vortex chirality ; Vortices</subject><ispartof>Microelectronic engineering, 2013-10, Vol.110, p.474-478</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-2874b44a49a0d7f244839b6e7843dc180853b9338f9d56bf92494d6d939cc1313</citedby><cites>FETCH-LOGICAL-c330t-2874b44a49a0d7f244839b6e7843dc180853b9338f9d56bf92494d6d939cc1313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0167931713004541$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Šoltýs, J.</creatorcontrib><creatorcontrib>Gaži, Š.</creatorcontrib><creatorcontrib>Fedor, J.</creatorcontrib><creatorcontrib>Tóbik, J.</creatorcontrib><creatorcontrib>Precner, M.</creatorcontrib><creatorcontrib>Cambel, V.</creatorcontrib><title>Magnetic nanostructures for non-volatile memories</title><title>Microelectronic engineering</title><description>•Two methods were used to fabricate submicron nanomagnets.•Magnets prepared by lift-off had vertical sidewalls without fencing features.•The nanomagnet mask pattern was optimized for ion-milling etch.•Angular dependence of the ground state was calculated by micromagnetic simulation.•The state of the nanomagnet is controlled by field direction. In this work we present two fabrication approaches for patterning submicron Pacman-like (PL) magnetic nanoelements, the additive and subtractive process. Within the first process, PL structures are revealed using a standard lift-off technique. The second one is based on argon ion milling through titanium mask patterns. In the PL magnet the missing sector itself represents a dipole, which together with the external field, controls the chirality of the nucleated vortex. In order to determine the chirality of the vortex ground state, an array of PL nanomagnets of the diameter 200nm prepared by the subtractive process, is mapped by the magnetic force microscopy. The experimental results are in good agreement with the results achieved by the micromagnetic simulations.</description><subject>Arrays</subject><subject>Bit patterned media</subject><subject>Chirality</subject><subject>Domain structure</subject><subject>Electron beam lithography</subject><subject>Fabrication of magnetic nanostructures</subject><subject>Fluid flow</subject><subject>Ground state</subject><subject>Micromagnetism</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Vortex chirality</subject><subject>Vortices</subject><issn>0167-9317</issn><issn>1873-5568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoWEd_gLsu3bQmzWua4EoGv2DEja5Dmr5KhrYZk3TAf2_Hce3qceHcC-8Qcs1oySgTt9tyRCwrynhJoaScnZCMyYYXdS3kKckWpikUZ805uYhxS5cMVGaEvZrPCZOz-WQmH1OYbZoDxrz3IZ_8VOz9YJIbMB9x9MFhvCRnvRkiXv3dFfl4fHhfPxebt6eX9f2msJzTVFSygRbAgDK0a_oKQHLVCmwk8M4ySWXNW8W57FVXi7ZXFSjoRKe4spZxxlfk5ri7C_5rxpj06KLFYTAT-jlqBgLqWgmABWVH1AYfY8Be74IbTfjWjOqDHr3Vix590KMpaPo7f3fs4PLD3mHQ0TqcLHYuoE268-6f9g9y4mvt</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Šoltýs, J.</creator><creator>Gaži, Š.</creator><creator>Fedor, J.</creator><creator>Tóbik, J.</creator><creator>Precner, M.</creator><creator>Cambel, V.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20131001</creationdate><title>Magnetic nanostructures for non-volatile memories</title><author>Šoltýs, J. ; Gaži, Š. ; Fedor, J. ; Tóbik, J. ; Precner, M. ; Cambel, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-2874b44a49a0d7f244839b6e7843dc180853b9338f9d56bf92494d6d939cc1313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Arrays</topic><topic>Bit patterned media</topic><topic>Chirality</topic><topic>Domain structure</topic><topic>Electron beam lithography</topic><topic>Fabrication of magnetic nanostructures</topic><topic>Fluid flow</topic><topic>Ground state</topic><topic>Micromagnetism</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Vortex chirality</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Šoltýs, J.</creatorcontrib><creatorcontrib>Gaži, Š.</creatorcontrib><creatorcontrib>Fedor, J.</creatorcontrib><creatorcontrib>Tóbik, J.</creatorcontrib><creatorcontrib>Precner, M.</creatorcontrib><creatorcontrib>Cambel, V.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microelectronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Šoltýs, J.</au><au>Gaži, Š.</au><au>Fedor, J.</au><au>Tóbik, J.</au><au>Precner, M.</au><au>Cambel, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic nanostructures for non-volatile memories</atitle><jtitle>Microelectronic engineering</jtitle><date>2013-10-01</date><risdate>2013</risdate><volume>110</volume><spage>474</spage><epage>478</epage><pages>474-478</pages><issn>0167-9317</issn><eissn>1873-5568</eissn><abstract>•Two methods were used to fabricate submicron nanomagnets.•Magnets prepared by lift-off had vertical sidewalls without fencing features.•The nanomagnet mask pattern was optimized for ion-milling etch.•Angular dependence of the ground state was calculated by micromagnetic simulation.•The state of the nanomagnet is controlled by field direction. In this work we present two fabrication approaches for patterning submicron Pacman-like (PL) magnetic nanoelements, the additive and subtractive process. Within the first process, PL structures are revealed using a standard lift-off technique. The second one is based on argon ion milling through titanium mask patterns. In the PL magnet the missing sector itself represents a dipole, which together with the external field, controls the chirality of the nucleated vortex. In order to determine the chirality of the vortex ground state, an array of PL nanomagnets of the diameter 200nm prepared by the subtractive process, is mapped by the magnetic force microscopy. The experimental results are in good agreement with the results achieved by the micromagnetic simulations.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.mee.2013.04.031</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-9317
ispartof Microelectronic engineering, 2013-10, Vol.110, p.474-478
issn 0167-9317
1873-5568
language eng
recordid cdi_proquest_miscellaneous_1464559644
source Elsevier ScienceDirect Journals
subjects Arrays
Bit patterned media
Chirality
Domain structure
Electron beam lithography
Fabrication of magnetic nanostructures
Fluid flow
Ground state
Micromagnetism
Nanocomposites
Nanomaterials
Nanostructure
Vortex chirality
Vortices
title Magnetic nanostructures for non-volatile memories
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A55%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20nanostructures%20for%20non-volatile%20memories&rft.jtitle=Microelectronic%20engineering&rft.au=%C5%A0olt%C3%BDs,%20J.&rft.date=2013-10-01&rft.volume=110&rft.spage=474&rft.epage=478&rft.pages=474-478&rft.issn=0167-9317&rft.eissn=1873-5568&rft_id=info:doi/10.1016/j.mee.2013.04.031&rft_dat=%3Cproquest_cross%3E1464559644%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464559644&rft_id=info:pmid/&rft_els_id=S0167931713004541&rfr_iscdi=true