Some inequalities involving eigenvalues of the Neumann Laplacian

This paper is concerned with the eigenvalues of the Neumann Laplacian on various classes of domains of given measure: simply‐connected Lipschitz planar domains, n‐sided planar polygons and smooth N‐dimensional domains. In each case, we consider some quantities involving low eigenvalues of the Neuman...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2013-11, Vol.36 (16), p.2145-2153
Hauptverfasser: Enache, C., Philippin, G.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is concerned with the eigenvalues of the Neumann Laplacian on various classes of domains of given measure: simply‐connected Lipschitz planar domains, n‐sided planar polygons and smooth N‐dimensional domains. In each case, we consider some quantities involving low eigenvalues of the Neumann Laplacian for which we obtain new inequalities. Moreover, we sharpen a universal bound derived by M. Ashbaugh and R. Benguria for sum of reciprocal of Neumann eigenvalues. Our investigations make use of some properties of conformal mappings, Bessel functions, symmetric domains or some isoperimetric inequalities for moments of inertia. Copyright © 2013 John Wiley & Sons, Ltd.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.2743