Investigating prediction performance of an artificial neural network and a numerical model of the tidal signal at Puerto Belgrano, Bahia Blanca Estuary (Argentina)
In the present study we compare performances of the prediction of hourly tidal level variations at Puerto Belgrano, a coastal site in the Bahia Blanca Estuary (Argentina), by means of the MOHID model, which is a numerical model designed for coastal and estuarine shallow water applications, and of an...
Gespeichert in:
Veröffentlicht in: | Acta geophysica 2013-12, Vol.61 (6), p.1522-1537 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1537 |
---|---|
container_issue | 6 |
container_start_page | 1522 |
container_title | Acta geophysica |
container_volume | 61 |
creator | Pierini, Jorge O. Lovallo, Michele Telesca, Luciano Gómez, Eduardo A. |
description | In the present study we compare performances of the prediction of hourly tidal level variations at Puerto Belgrano, a coastal site in the Bahia Blanca Estuary (Argentina), by means of the MOHID model, which is a numerical model designed for coastal and estuarine shallow water applications, and of an artificial neural network (ANN). It was shown that the ANN model is able to predict the hourly tidal levels over long term duration with at least seven days of observations and with a better performance in respect to the numerical model. Our findings can be useful to implement ANN-based tools for future studies of the hydrodynamics of Bahía Blanca estuary. |
doi_str_mv | 10.2478/s11600-012-0093-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1464554964</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3082000991</sourcerecordid><originalsourceid>FETCH-LOGICAL-a429t-79bc7d14c2d2ef314c33a0aff917d7e078812e1e020fbfeb1757acef5f5807953</originalsourceid><addsrcrecordid>eNqNUctu1TAQjRBIlMIHsLPEpkgEbMeOkx29VWkrVWoXsI7mJuPUJbEvttPH9_CjzCVdICQkVjOaOWfOzJyieCv4R6lM8ykJUXNeciFLztuqfHhWHIim1aVRWj9_ymtt5MviVUq3nNeKsAfFzwt_hym7EbLzI9tFHFyfXfBsh9GGOIPvkQXLwDOI2VnXO5iYxyX-Dvk-xO_UHBgwv8wYXU_1OQw47Vn5Bll2A5WSGz0FyOx6wZgD2-A0RvDhA9vAjQO2mUgK2GnKC8RHdnQcR_S0FLx_XbywMCV88xQPi29fTr-enJeXV2cXJ8eXJSjZ5tK0294MQvVykGgrSqoKOFjbCjMY5KZphESBXHK7tbgVRhvo0WqrG25aXR0WR-vcXQw_FvpKN7vU40SLYVhSJ1RNz1RtrQj67i_obVgiHbhHVXVtjFCcUGJF9TGkFNF2u-hmuq4TvNvb1q22dWRFt7eteyDO55VzD1PGOOAYl0dK_hD4F7cWtdBS0gi5jkgk58f_4la_AMGysc4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1436677140</pqid></control><display><type>article</type><title>Investigating prediction performance of an artificial neural network and a numerical model of the tidal signal at Puerto Belgrano, Bahia Blanca Estuary (Argentina)</title><source>SpringerLink Journals - AutoHoldings</source><creator>Pierini, Jorge O. ; Lovallo, Michele ; Telesca, Luciano ; Gómez, Eduardo A.</creator><creatorcontrib>Pierini, Jorge O. ; Lovallo, Michele ; Telesca, Luciano ; Gómez, Eduardo A.</creatorcontrib><description>In the present study we compare performances of the prediction of hourly tidal level variations at Puerto Belgrano, a coastal site in the Bahia Blanca Estuary (Argentina), by means of the MOHID model, which is a numerical model designed for coastal and estuarine shallow water applications, and of an artificial neural network (ANN). It was shown that the ANN model is able to predict the hourly tidal levels over long term duration with at least seven days of observations and with a better performance in respect to the numerical model. Our findings can be useful to implement ANN-based tools for future studies of the hydrodynamics of Bahía Blanca estuary.</description><identifier>ISSN: 1895-6572</identifier><identifier>EISSN: 1895-7455</identifier><identifier>DOI: 10.2478/s11600-012-0093-x</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Artificial neural networks ; Coastal ; Computational fluid dynamics ; Earth and Environmental Science ; Earth Sciences ; Estuaries ; Fluid dynamics ; Geophysics ; Geophysics/Geodesy ; Geotechnical Engineering & Applied Earth Sciences ; hydrodinamic model ; Hydrodynamics ; Learning theory ; Mathematical models ; Neural networks ; Research Article ; Shallow water ; Structural Geology ; Tidal waves ; tides</subject><ispartof>Acta geophysica, 2013-12, Vol.61 (6), p.1522-1537</ispartof><rights>Versita Warsaw and Springer-Verlag Wien 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a429t-79bc7d14c2d2ef314c33a0aff917d7e078812e1e020fbfeb1757acef5f5807953</citedby><cites>FETCH-LOGICAL-a429t-79bc7d14c2d2ef314c33a0aff917d7e078812e1e020fbfeb1757acef5f5807953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.2478/s11600-012-0093-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.2478/s11600-012-0093-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Pierini, Jorge O.</creatorcontrib><creatorcontrib>Lovallo, Michele</creatorcontrib><creatorcontrib>Telesca, Luciano</creatorcontrib><creatorcontrib>Gómez, Eduardo A.</creatorcontrib><title>Investigating prediction performance of an artificial neural network and a numerical model of the tidal signal at Puerto Belgrano, Bahia Blanca Estuary (Argentina)</title><title>Acta geophysica</title><addtitle>Acta Geophys</addtitle><description>In the present study we compare performances of the prediction of hourly tidal level variations at Puerto Belgrano, a coastal site in the Bahia Blanca Estuary (Argentina), by means of the MOHID model, which is a numerical model designed for coastal and estuarine shallow water applications, and of an artificial neural network (ANN). It was shown that the ANN model is able to predict the hourly tidal levels over long term duration with at least seven days of observations and with a better performance in respect to the numerical model. Our findings can be useful to implement ANN-based tools for future studies of the hydrodynamics of Bahía Blanca estuary.</description><subject>Artificial neural networks</subject><subject>Coastal</subject><subject>Computational fluid dynamics</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Estuaries</subject><subject>Fluid dynamics</subject><subject>Geophysics</subject><subject>Geophysics/Geodesy</subject><subject>Geotechnical Engineering & Applied Earth Sciences</subject><subject>hydrodinamic model</subject><subject>Hydrodynamics</subject><subject>Learning theory</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Research Article</subject><subject>Shallow water</subject><subject>Structural Geology</subject><subject>Tidal waves</subject><subject>tides</subject><issn>1895-6572</issn><issn>1895-7455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNUctu1TAQjRBIlMIHsLPEpkgEbMeOkx29VWkrVWoXsI7mJuPUJbEvttPH9_CjzCVdICQkVjOaOWfOzJyieCv4R6lM8ykJUXNeciFLztuqfHhWHIim1aVRWj9_ymtt5MviVUq3nNeKsAfFzwt_hym7EbLzI9tFHFyfXfBsh9GGOIPvkQXLwDOI2VnXO5iYxyX-Dvk-xO_UHBgwv8wYXU_1OQw47Vn5Bll2A5WSGz0FyOx6wZgD2-A0RvDhA9vAjQO2mUgK2GnKC8RHdnQcR_S0FLx_XbywMCV88xQPi29fTr-enJeXV2cXJ8eXJSjZ5tK0294MQvVykGgrSqoKOFjbCjMY5KZphESBXHK7tbgVRhvo0WqrG25aXR0WR-vcXQw_FvpKN7vU40SLYVhSJ1RNz1RtrQj67i_obVgiHbhHVXVtjFCcUGJF9TGkFNF2u-hmuq4TvNvb1q22dWRFt7eteyDO55VzD1PGOOAYl0dK_hD4F7cWtdBS0gi5jkgk58f_4la_AMGysc4</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Pierini, Jorge O.</creator><creator>Lovallo, Michele</creator><creator>Telesca, Luciano</creator><creator>Gómez, Eduardo A.</creator><general>Springer Vienna</general><general>Versita</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7SC</scope><scope>7SM</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131201</creationdate><title>Investigating prediction performance of an artificial neural network and a numerical model of the tidal signal at Puerto Belgrano, Bahia Blanca Estuary (Argentina)</title><author>Pierini, Jorge O. ; Lovallo, Michele ; Telesca, Luciano ; Gómez, Eduardo A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a429t-79bc7d14c2d2ef314c33a0aff917d7e078812e1e020fbfeb1757acef5f5807953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Artificial neural networks</topic><topic>Coastal</topic><topic>Computational fluid dynamics</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Estuaries</topic><topic>Fluid dynamics</topic><topic>Geophysics</topic><topic>Geophysics/Geodesy</topic><topic>Geotechnical Engineering & Applied Earth Sciences</topic><topic>hydrodinamic model</topic><topic>Hydrodynamics</topic><topic>Learning theory</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Research Article</topic><topic>Shallow water</topic><topic>Structural Geology</topic><topic>Tidal waves</topic><topic>tides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pierini, Jorge O.</creatorcontrib><creatorcontrib>Lovallo, Michele</creatorcontrib><creatorcontrib>Telesca, Luciano</creatorcontrib><creatorcontrib>Gómez, Eduardo A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>Computer and Information Systems Abstracts</collection><collection>Earthquake Engineering Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Acta geophysica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pierini, Jorge O.</au><au>Lovallo, Michele</au><au>Telesca, Luciano</au><au>Gómez, Eduardo A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigating prediction performance of an artificial neural network and a numerical model of the tidal signal at Puerto Belgrano, Bahia Blanca Estuary (Argentina)</atitle><jtitle>Acta geophysica</jtitle><stitle>Acta Geophys</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>61</volume><issue>6</issue><spage>1522</spage><epage>1537</epage><pages>1522-1537</pages><issn>1895-6572</issn><eissn>1895-7455</eissn><abstract>In the present study we compare performances of the prediction of hourly tidal level variations at Puerto Belgrano, a coastal site in the Bahia Blanca Estuary (Argentina), by means of the MOHID model, which is a numerical model designed for coastal and estuarine shallow water applications, and of an artificial neural network (ANN). It was shown that the ANN model is able to predict the hourly tidal levels over long term duration with at least seven days of observations and with a better performance in respect to the numerical model. Our findings can be useful to implement ANN-based tools for future studies of the hydrodynamics of Bahía Blanca estuary.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.2478/s11600-012-0093-x</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1895-6572 |
ispartof | Acta geophysica, 2013-12, Vol.61 (6), p.1522-1537 |
issn | 1895-6572 1895-7455 |
language | eng |
recordid | cdi_proquest_miscellaneous_1464554964 |
source | SpringerLink Journals - AutoHoldings |
subjects | Artificial neural networks Coastal Computational fluid dynamics Earth and Environmental Science Earth Sciences Estuaries Fluid dynamics Geophysics Geophysics/Geodesy Geotechnical Engineering & Applied Earth Sciences hydrodinamic model Hydrodynamics Learning theory Mathematical models Neural networks Research Article Shallow water Structural Geology Tidal waves tides |
title | Investigating prediction performance of an artificial neural network and a numerical model of the tidal signal at Puerto Belgrano, Bahia Blanca Estuary (Argentina) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T21%3A14%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigating%20prediction%20performance%20of%20an%20artificial%20neural%20network%20and%20a%20numerical%20model%20of%20the%20tidal%20signal%20at%20Puerto%20Belgrano,%20Bahia%20Blanca%20Estuary%20(Argentina)&rft.jtitle=Acta%20geophysica&rft.au=Pierini,%20Jorge%20O.&rft.date=2013-12-01&rft.volume=61&rft.issue=6&rft.spage=1522&rft.epage=1537&rft.pages=1522-1537&rft.issn=1895-6572&rft.eissn=1895-7455&rft_id=info:doi/10.2478/s11600-012-0093-x&rft_dat=%3Cproquest_cross%3E3082000991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1436677140&rft_id=info:pmid/&rfr_iscdi=true |