Microfluidic Device for Controllable Chemical Release via Field-Actuated Membrane Incorporating Nanoparticles

We report a robust magnetic-membrane-based microfluidic platform for controllable chemical release. The magnetic membrane was prepared by mixing polydimethylsiloxane (PDMS) and carbonyl-iron nanoparticles together to obtain a flexible thin film. With combined, simultaneous regulation of magnetic sti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nanomaterials 2013-01, Vol.2013 (2013), p.1-6
Hauptverfasser: Wen, Weijia, Hui, Yu Sanna, Yi, Xin, Wang, Limu, Li, Shunbo, Wang, Xiang, Qin, Jianhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue 2013
container_start_page 1
container_title Journal of nanomaterials
container_volume 2013
creator Wen, Weijia
Hui, Yu Sanna
Yi, Xin
Wang, Limu
Li, Shunbo
Wang, Xiang
Qin, Jianhua
description We report a robust magnetic-membrane-based microfluidic platform for controllable chemical release. The magnetic membrane was prepared by mixing polydimethylsiloxane (PDMS) and carbonyl-iron nanoparticles together to obtain a flexible thin film. With combined, simultaneous regulation of magnetic stimulus and mechanical pumping, the desired chemical release rate can easily be realized. For example, the dose release experimental data was well fitted by a mathematical sigmoidal model, exhibiting a typical dose-response relationship, which shows promise in providing significant guidance for on-demand drug delivery. To test the platform’s feasibility, our microfluidic device was employed in an experiment involving Escherichia coli culture under controlled antibiotic ciprofloxacin exposure, and the expected outcomes were successfully obtained. Our experimental results indicate that such a microfluidic device, with high accuracy and easy manipulation properties, can legitimately be characterized as active chemical release system.
doi_str_mv 10.1155/2013/864584
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1464553046</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1464553046</sourcerecordid><originalsourceid>FETCH-LOGICAL-a467t-b33a9b1627cd26aa544328ca99b4623d10aed664274e0f60c32301dfe51d83aa3</originalsourceid><addsrcrecordid>eNqN0EtLxDAQwPEiCq6Pk3fJUZRq3tsel_UJq4LouUyTqRtJmzXpKn57KxXxpqfM4ccM-WfZAaOnjCl1xikTZ4WWqpAb2YTpYppLxsvNn5nR7WwnpRdKpSoVn2TtrTMxNH7trDPkHN-cQdKESOah62PwHmqPZL7E1hnw5AE9QkLy5oBcOvQ2n5l-DT1acottHaFDctOZEFchQu-6Z3IHXVhB7J3xmPayrQZ8wv3vdzd7urx4nF_ni_urm_lskYPU0z6vhYCyZppPjeUaQEkpeGGgLGupubCMAlqtJZ9KpI2mRnBBmW1QMVsIALGbHY17VzG8rjH1VeuSweE3HYZ1qpgcGilBpf4flWo4NdCTkQ7FUorYVKvoWogfFaPVV__qq3819h_08aiXrrPw7v7AhyPGgWADv7BgeoCfpZeOtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464545274</pqid></control><display><type>article</type><title>Microfluidic Device for Controllable Chemical Release via Field-Actuated Membrane Incorporating Nanoparticles</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Wen, Weijia ; Hui, Yu Sanna ; Yi, Xin ; Wang, Limu ; Li, Shunbo ; Wang, Xiang ; Qin, Jianhua</creator><contributor>Vasilev, Krasimir</contributor><creatorcontrib>Wen, Weijia ; Hui, Yu Sanna ; Yi, Xin ; Wang, Limu ; Li, Shunbo ; Wang, Xiang ; Qin, Jianhua ; Vasilev, Krasimir</creatorcontrib><description>We report a robust magnetic-membrane-based microfluidic platform for controllable chemical release. The magnetic membrane was prepared by mixing polydimethylsiloxane (PDMS) and carbonyl-iron nanoparticles together to obtain a flexible thin film. With combined, simultaneous regulation of magnetic stimulus and mechanical pumping, the desired chemical release rate can easily be realized. For example, the dose release experimental data was well fitted by a mathematical sigmoidal model, exhibiting a typical dose-response relationship, which shows promise in providing significant guidance for on-demand drug delivery. To test the platform’s feasibility, our microfluidic device was employed in an experiment involving Escherichia coli culture under controlled antibiotic ciprofloxacin exposure, and the expected outcomes were successfully obtained. Our experimental results indicate that such a microfluidic device, with high accuracy and easy manipulation properties, can legitimately be characterized as active chemical release system.</description><identifier>ISSN: 1687-4110</identifier><identifier>EISSN: 1687-4129</identifier><identifier>DOI: 10.1155/2013/864584</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Active control ; Devices ; Mathematical models ; Membranes ; Microfluidics ; Nanoparticles ; Platforms ; Stability</subject><ispartof>Journal of nanomaterials, 2013-01, Vol.2013 (2013), p.1-6</ispartof><rights>Copyright © 2013 Xiang Wang et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a467t-b33a9b1627cd26aa544328ca99b4623d10aed664274e0f60c32301dfe51d83aa3</citedby><cites>FETCH-LOGICAL-a467t-b33a9b1627cd26aa544328ca99b4623d10aed664274e0f60c32301dfe51d83aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><contributor>Vasilev, Krasimir</contributor><creatorcontrib>Wen, Weijia</creatorcontrib><creatorcontrib>Hui, Yu Sanna</creatorcontrib><creatorcontrib>Yi, Xin</creatorcontrib><creatorcontrib>Wang, Limu</creatorcontrib><creatorcontrib>Li, Shunbo</creatorcontrib><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>Qin, Jianhua</creatorcontrib><title>Microfluidic Device for Controllable Chemical Release via Field-Actuated Membrane Incorporating Nanoparticles</title><title>Journal of nanomaterials</title><description>We report a robust magnetic-membrane-based microfluidic platform for controllable chemical release. The magnetic membrane was prepared by mixing polydimethylsiloxane (PDMS) and carbonyl-iron nanoparticles together to obtain a flexible thin film. With combined, simultaneous regulation of magnetic stimulus and mechanical pumping, the desired chemical release rate can easily be realized. For example, the dose release experimental data was well fitted by a mathematical sigmoidal model, exhibiting a typical dose-response relationship, which shows promise in providing significant guidance for on-demand drug delivery. To test the platform’s feasibility, our microfluidic device was employed in an experiment involving Escherichia coli culture under controlled antibiotic ciprofloxacin exposure, and the expected outcomes were successfully obtained. Our experimental results indicate that such a microfluidic device, with high accuracy and easy manipulation properties, can legitimately be characterized as active chemical release system.</description><subject>Active control</subject><subject>Devices</subject><subject>Mathematical models</subject><subject>Membranes</subject><subject>Microfluidics</subject><subject>Nanoparticles</subject><subject>Platforms</subject><subject>Stability</subject><issn>1687-4110</issn><issn>1687-4129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNqN0EtLxDAQwPEiCq6Pk3fJUZRq3tsel_UJq4LouUyTqRtJmzXpKn57KxXxpqfM4ccM-WfZAaOnjCl1xikTZ4WWqpAb2YTpYppLxsvNn5nR7WwnpRdKpSoVn2TtrTMxNH7trDPkHN-cQdKESOah62PwHmqPZL7E1hnw5AE9QkLy5oBcOvQ2n5l-DT1acottHaFDctOZEFchQu-6Z3IHXVhB7J3xmPayrQZ8wv3vdzd7urx4nF_ni_urm_lskYPU0z6vhYCyZppPjeUaQEkpeGGgLGupubCMAlqtJZ9KpI2mRnBBmW1QMVsIALGbHY17VzG8rjH1VeuSweE3HYZ1qpgcGilBpf4flWo4NdCTkQ7FUorYVKvoWogfFaPVV__qq3819h_08aiXrrPw7v7AhyPGgWADv7BgeoCfpZeOtg</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Wen, Weijia</creator><creator>Hui, Yu Sanna</creator><creator>Yi, Xin</creator><creator>Wang, Limu</creator><creator>Li, Shunbo</creator><creator>Wang, Xiang</creator><creator>Qin, Jianhua</creator><general>Hindawi Publishing Corporation</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130101</creationdate><title>Microfluidic Device for Controllable Chemical Release via Field-Actuated Membrane Incorporating Nanoparticles</title><author>Wen, Weijia ; Hui, Yu Sanna ; Yi, Xin ; Wang, Limu ; Li, Shunbo ; Wang, Xiang ; Qin, Jianhua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a467t-b33a9b1627cd26aa544328ca99b4623d10aed664274e0f60c32301dfe51d83aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Active control</topic><topic>Devices</topic><topic>Mathematical models</topic><topic>Membranes</topic><topic>Microfluidics</topic><topic>Nanoparticles</topic><topic>Platforms</topic><topic>Stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Weijia</creatorcontrib><creatorcontrib>Hui, Yu Sanna</creatorcontrib><creatorcontrib>Yi, Xin</creatorcontrib><creatorcontrib>Wang, Limu</creatorcontrib><creatorcontrib>Li, Shunbo</creatorcontrib><creatorcontrib>Wang, Xiang</creatorcontrib><creatorcontrib>Qin, Jianhua</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of nanomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Weijia</au><au>Hui, Yu Sanna</au><au>Yi, Xin</au><au>Wang, Limu</au><au>Li, Shunbo</au><au>Wang, Xiang</au><au>Qin, Jianhua</au><au>Vasilev, Krasimir</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microfluidic Device for Controllable Chemical Release via Field-Actuated Membrane Incorporating Nanoparticles</atitle><jtitle>Journal of nanomaterials</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>2013</volume><issue>2013</issue><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1687-4110</issn><eissn>1687-4129</eissn><abstract>We report a robust magnetic-membrane-based microfluidic platform for controllable chemical release. The magnetic membrane was prepared by mixing polydimethylsiloxane (PDMS) and carbonyl-iron nanoparticles together to obtain a flexible thin film. With combined, simultaneous regulation of magnetic stimulus and mechanical pumping, the desired chemical release rate can easily be realized. For example, the dose release experimental data was well fitted by a mathematical sigmoidal model, exhibiting a typical dose-response relationship, which shows promise in providing significant guidance for on-demand drug delivery. To test the platform’s feasibility, our microfluidic device was employed in an experiment involving Escherichia coli culture under controlled antibiotic ciprofloxacin exposure, and the expected outcomes were successfully obtained. Our experimental results indicate that such a microfluidic device, with high accuracy and easy manipulation properties, can legitimately be characterized as active chemical release system.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2013/864584</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-4110
ispartof Journal of nanomaterials, 2013-01, Vol.2013 (2013), p.1-6
issn 1687-4110
1687-4129
language eng
recordid cdi_proquest_miscellaneous_1464553046
source EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Active control
Devices
Mathematical models
Membranes
Microfluidics
Nanoparticles
Platforms
Stability
title Microfluidic Device for Controllable Chemical Release via Field-Actuated Membrane Incorporating Nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A11%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microfluidic%20Device%20for%20Controllable%20Chemical%20Release%20via%20Field-Actuated%20Membrane%20Incorporating%20Nanoparticles&rft.jtitle=Journal%20of%20nanomaterials&rft.au=Wen,%20Weijia&rft.date=2013-01-01&rft.volume=2013&rft.issue=2013&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1687-4110&rft.eissn=1687-4129&rft_id=info:doi/10.1155/2013/864584&rft_dat=%3Cproquest_cross%3E1464553046%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464545274&rft_id=info:pmid/&rfr_iscdi=true