Disturbance observer-based adaptive integral sliding mode control for rigid spacecraft attitude maneuvers

This article considers the attitude tracking problem of a rigid spacecraft involving inertia matrix uncertainty and external disturbance. The adaptive sliding mode control is utilized for the attitude controller design. The major concern is reducing the switching gain generated by current adaptive s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering Journal of aerospace engineering, 2013-10, Vol.227 (10), p.1660-1671
Hauptverfasser: Cong, Binglong, Chen, Zhen, Liu, Xiangdong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1671
container_issue 10
container_start_page 1660
container_title Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering
container_volume 227
creator Cong, Binglong
Chen, Zhen
Liu, Xiangdong
description This article considers the attitude tracking problem of a rigid spacecraft involving inertia matrix uncertainty and external disturbance. The adaptive sliding mode control is utilized for the attitude controller design. The major concern is reducing the switching gain generated by current adaptive sliding mode control, thereby alleviating the chattering problem. By eliminating the influence of initial tracking error from the switching gain adaptation, an adaptive integral sliding mode control scheme is first presented. As compared with current adaptive sliding mode control, a much smaller switching gain is produced. Then, a disturbance observer-based adaptive integral sliding mode control design is proposed to further enhance the result. To this end, the joint effect caused by external disturbance and inertia matrix uncertainty, referred as lumped uncertainty, is divided into a slow varying part and a rapid varying part. By compensating the slow varying component via a disturbance observer, the switching gain is only required to be larger than the upper bound on the rapid varying component. The effectiveness of the proposed strategies, especially the switching gain reduction ability, is verified by both theoretical analysis and simulation results.
doi_str_mv 10.1177/0954410012464588
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1464549680</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0954410012464588</sage_id><sourcerecordid>1464549680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-74189d2757b7b3dc3bd66dc61d2f67e0697a7f3adf46f41a00a476e38a13b1f13</originalsourceid><addsrcrecordid>eNp1kM1LxDAUxIMouK7ePQa8eKkmTZq0R1k_YcGLnstrPkqWtlmTdMH_3izrQRZ8l3eY3wzDIHRNyR2lUt6TpuKcEkJLLnhV1ydoURJOC0bK6hQt9nKx18_RRYwbkq8SbIHco4tpDh1MymDfRRN2JhQdRKMxaNgmtzPYTcn0AQYcB6fd1OPRa4OVn1LwA7Y-4OB6p3HcgjIqgE0YUnJpztQIk5lzZrxEZxaGaK5-_xJ9Pj99rF6L9fvL2-phXSjGy1RITutGl7KSneyYVqzTQmglqC6tkIaIRoK0DLTlwnIKhACXwrAaKOuopWyJbg-52-C_ZhNTO7qozDDkIn6OLd3vwxtRk4zeHKEbP4cpt8sUk2UpmGgyRQ6UCj7GYGy7DW6E8N1S0u63b4-3z5biYInQmz-h__E_2JOEbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1437226369</pqid></control><display><type>article</type><title>Disturbance observer-based adaptive integral sliding mode control for rigid spacecraft attitude maneuvers</title><source>SAGE Complete A-Z List</source><creator>Cong, Binglong ; Chen, Zhen ; Liu, Xiangdong</creator><creatorcontrib>Cong, Binglong ; Chen, Zhen ; Liu, Xiangdong</creatorcontrib><description>This article considers the attitude tracking problem of a rigid spacecraft involving inertia matrix uncertainty and external disturbance. The adaptive sliding mode control is utilized for the attitude controller design. The major concern is reducing the switching gain generated by current adaptive sliding mode control, thereby alleviating the chattering problem. By eliminating the influence of initial tracking error from the switching gain adaptation, an adaptive integral sliding mode control scheme is first presented. As compared with current adaptive sliding mode control, a much smaller switching gain is produced. Then, a disturbance observer-based adaptive integral sliding mode control design is proposed to further enhance the result. To this end, the joint effect caused by external disturbance and inertia matrix uncertainty, referred as lumped uncertainty, is divided into a slow varying part and a rapid varying part. By compensating the slow varying component via a disturbance observer, the switching gain is only required to be larger than the upper bound on the rapid varying component. The effectiveness of the proposed strategies, especially the switching gain reduction ability, is verified by both theoretical analysis and simulation results.</description><identifier>ISSN: 0954-4100</identifier><identifier>EISSN: 2041-3025</identifier><identifier>DOI: 10.1177/0954410012464588</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Adaptive control systems ; Aerospace engineering ; Aircraft components ; Computer simulation ; Control systems ; Controllers ; Design ; Disturbances ; Gain ; Integrals ; Sliding mode control ; Spacecraft ; Switching ; Uncertainty</subject><ispartof>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering, 2013-10, Vol.227 (10), p.1660-1671</ispartof><rights>IMechE 2012</rights><rights>Copyright SAGE PUBLICATIONS, INC. Oct 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-74189d2757b7b3dc3bd66dc61d2f67e0697a7f3adf46f41a00a476e38a13b1f13</citedby><cites>FETCH-LOGICAL-c342t-74189d2757b7b3dc3bd66dc61d2f67e0697a7f3adf46f41a00a476e38a13b1f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0954410012464588$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0954410012464588$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21818,27923,27924,43620,43621</link.rule.ids></links><search><creatorcontrib>Cong, Binglong</creatorcontrib><creatorcontrib>Chen, Zhen</creatorcontrib><creatorcontrib>Liu, Xiangdong</creatorcontrib><title>Disturbance observer-based adaptive integral sliding mode control for rigid spacecraft attitude maneuvers</title><title>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</title><description>This article considers the attitude tracking problem of a rigid spacecraft involving inertia matrix uncertainty and external disturbance. The adaptive sliding mode control is utilized for the attitude controller design. The major concern is reducing the switching gain generated by current adaptive sliding mode control, thereby alleviating the chattering problem. By eliminating the influence of initial tracking error from the switching gain adaptation, an adaptive integral sliding mode control scheme is first presented. As compared with current adaptive sliding mode control, a much smaller switching gain is produced. Then, a disturbance observer-based adaptive integral sliding mode control design is proposed to further enhance the result. To this end, the joint effect caused by external disturbance and inertia matrix uncertainty, referred as lumped uncertainty, is divided into a slow varying part and a rapid varying part. By compensating the slow varying component via a disturbance observer, the switching gain is only required to be larger than the upper bound on the rapid varying component. The effectiveness of the proposed strategies, especially the switching gain reduction ability, is verified by both theoretical analysis and simulation results.</description><subject>Adaptive control systems</subject><subject>Aerospace engineering</subject><subject>Aircraft components</subject><subject>Computer simulation</subject><subject>Control systems</subject><subject>Controllers</subject><subject>Design</subject><subject>Disturbances</subject><subject>Gain</subject><subject>Integrals</subject><subject>Sliding mode control</subject><subject>Spacecraft</subject><subject>Switching</subject><subject>Uncertainty</subject><issn>0954-4100</issn><issn>2041-3025</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LxDAUxIMouK7ePQa8eKkmTZq0R1k_YcGLnstrPkqWtlmTdMH_3izrQRZ8l3eY3wzDIHRNyR2lUt6TpuKcEkJLLnhV1ydoURJOC0bK6hQt9nKx18_RRYwbkq8SbIHco4tpDh1MymDfRRN2JhQdRKMxaNgmtzPYTcn0AQYcB6fd1OPRa4OVn1LwA7Y-4OB6p3HcgjIqgE0YUnJpztQIk5lzZrxEZxaGaK5-_xJ9Pj99rF6L9fvL2-phXSjGy1RITutGl7KSneyYVqzTQmglqC6tkIaIRoK0DLTlwnIKhACXwrAaKOuopWyJbg-52-C_ZhNTO7qozDDkIn6OLd3vwxtRk4zeHKEbP4cpt8sUk2UpmGgyRQ6UCj7GYGy7DW6E8N1S0u63b4-3z5biYInQmz-h__E_2JOEbA</recordid><startdate>201310</startdate><enddate>201310</enddate><creator>Cong, Binglong</creator><creator>Chen, Zhen</creator><creator>Liu, Xiangdong</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>201310</creationdate><title>Disturbance observer-based adaptive integral sliding mode control for rigid spacecraft attitude maneuvers</title><author>Cong, Binglong ; Chen, Zhen ; Liu, Xiangdong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-74189d2757b7b3dc3bd66dc61d2f67e0697a7f3adf46f41a00a476e38a13b1f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adaptive control systems</topic><topic>Aerospace engineering</topic><topic>Aircraft components</topic><topic>Computer simulation</topic><topic>Control systems</topic><topic>Controllers</topic><topic>Design</topic><topic>Disturbances</topic><topic>Gain</topic><topic>Integrals</topic><topic>Sliding mode control</topic><topic>Spacecraft</topic><topic>Switching</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cong, Binglong</creatorcontrib><creatorcontrib>Chen, Zhen</creatorcontrib><creatorcontrib>Liu, Xiangdong</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cong, Binglong</au><au>Chen, Zhen</au><au>Liu, Xiangdong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Disturbance observer-based adaptive integral sliding mode control for rigid spacecraft attitude maneuvers</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering</jtitle><date>2013-10</date><risdate>2013</risdate><volume>227</volume><issue>10</issue><spage>1660</spage><epage>1671</epage><pages>1660-1671</pages><issn>0954-4100</issn><eissn>2041-3025</eissn><abstract>This article considers the attitude tracking problem of a rigid spacecraft involving inertia matrix uncertainty and external disturbance. The adaptive sliding mode control is utilized for the attitude controller design. The major concern is reducing the switching gain generated by current adaptive sliding mode control, thereby alleviating the chattering problem. By eliminating the influence of initial tracking error from the switching gain adaptation, an adaptive integral sliding mode control scheme is first presented. As compared with current adaptive sliding mode control, a much smaller switching gain is produced. Then, a disturbance observer-based adaptive integral sliding mode control design is proposed to further enhance the result. To this end, the joint effect caused by external disturbance and inertia matrix uncertainty, referred as lumped uncertainty, is divided into a slow varying part and a rapid varying part. By compensating the slow varying component via a disturbance observer, the switching gain is only required to be larger than the upper bound on the rapid varying component. The effectiveness of the proposed strategies, especially the switching gain reduction ability, is verified by both theoretical analysis and simulation results.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0954410012464588</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0954-4100
ispartof Proceedings of the Institution of Mechanical Engineers. Part G, Journal of aerospace engineering, 2013-10, Vol.227 (10), p.1660-1671
issn 0954-4100
2041-3025
language eng
recordid cdi_proquest_miscellaneous_1464549680
source SAGE Complete A-Z List
subjects Adaptive control systems
Aerospace engineering
Aircraft components
Computer simulation
Control systems
Controllers
Design
Disturbances
Gain
Integrals
Sliding mode control
Spacecraft
Switching
Uncertainty
title Disturbance observer-based adaptive integral sliding mode control for rigid spacecraft attitude maneuvers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T11%3A45%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Disturbance%20observer-based%20adaptive%20integral%20sliding%20mode%20control%20for%20rigid%20spacecraft%20attitude%20maneuvers&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers.%20Part%20G,%20Journal%20of%20aerospace%20engineering&rft.au=Cong,%20Binglong&rft.date=2013-10&rft.volume=227&rft.issue=10&rft.spage=1660&rft.epage=1671&rft.pages=1660-1671&rft.issn=0954-4100&rft.eissn=2041-3025&rft_id=info:doi/10.1177/0954410012464588&rft_dat=%3Cproquest_cross%3E1464549680%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1437226369&rft_id=info:pmid/&rft_sage_id=10.1177_0954410012464588&rfr_iscdi=true