(α,η) phase diagrams in tilted chiral smectics

The polymorphism of tilted chiral smectics liquid crystals is incredibly rich and encompasses many subphases such as SmCA⁎; SmCFi1⁎; SmCFi2⁎; SmC⁎; SmCα⁎. The continuum theory established by Marcerou (2010) [1] is used to derive an expression for the free energy density of those subphases. The minim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physica. B, Condensed matter Condensed matter, 2013-02, Vol.410, p.162-169
Hauptverfasser: Rjili, M., Marcerou, J.P., Gharbi, A., Othman, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 169
container_issue
container_start_page 162
container_title Physica. B, Condensed matter
container_volume 410
creator Rjili, M.
Marcerou, J.P.
Gharbi, A.
Othman, T.
description The polymorphism of tilted chiral smectics liquid crystals is incredibly rich and encompasses many subphases such as SmCA⁎; SmCFi1⁎; SmCFi2⁎; SmC⁎; SmCα⁎. The continuum theory established by Marcerou (2010) [1] is used to derive an expression for the free energy density of those subphases. The minimization of this free energy is obtained through a combination of analytical and numerical methods. It leads to a phase diagram built in the (α,η) plane where α is local angular parameter and η describes the variation of the temperature. From this graphical representation, many experimentally observed phase sequences of ferroelectric liquid crystals can be explained, even them including subphases which were recently observed like the SmC5⁎ and the SmC6⁎ ones. However, it should be emphasized that the details of predicted phase diagram are strongly dependent on the compound studied.
doi_str_mv 10.1016/j.physb.2012.11.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1464548632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921452612009994</els_id><sourcerecordid>1464548632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-eaf1459419dec76413db172a158960b3e64d580b5d9cfe6b18b82ab73b99b4cd3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwBWyyQSoSCR7bcZIFC1TxkiqxgbXlV6irJC2egNTPYsVf9JtIacWS2czm3LmaQ8g50AwoyOtFtpqv0WSMAssAMgpwQEZQFjxlwPNDMqIVg1TkTB6TE8QFHQYKGBE62Xxdbb4vk9Vco09c0G9Rt5iELulD03uX2HmIukmw9bYPFk_JUa0b9Gf7PSav93cv08d09vzwNL2dpZZL2ade1yDySkDlvC2kAO4MFExDXlaSGu6lcHlJTe4qW3tpoDQl06bgpqqMsI6PyWR3dxWX7x8ee9UGtL5pdOeXH6hASJGLUnI2oHyH2rhEjL5WqxhaHdcKqNr6UQv160dt_SgANfgZUhf7Ao1WN3XUnQ34F2Wy5FQyOXA3O84P334GHxXa4DvrXYiDEuWW4d-eHy1bfBE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464548632</pqid></control><display><type>article</type><title>(α,η) phase diagrams in tilted chiral smectics</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Rjili, M. ; Marcerou, J.P. ; Gharbi, A. ; Othman, T.</creator><creatorcontrib>Rjili, M. ; Marcerou, J.P. ; Gharbi, A. ; Othman, T.</creatorcontrib><description>The polymorphism of tilted chiral smectics liquid crystals is incredibly rich and encompasses many subphases such as SmCA⁎; SmCFi1⁎; SmCFi2⁎; SmC⁎; SmCα⁎. The continuum theory established by Marcerou (2010) [1] is used to derive an expression for the free energy density of those subphases. The minimization of this free energy is obtained through a combination of analytical and numerical methods. It leads to a phase diagram built in the (α,η) plane where α is local angular parameter and η describes the variation of the temperature. From this graphical representation, many experimentally observed phase sequences of ferroelectric liquid crystals can be explained, even them including subphases which were recently observed like the SmC5⁎ and the SmC6⁎ ones. However, it should be emphasized that the details of predicted phase diagram are strongly dependent on the compound studied.</description><identifier>ISSN: 0921-4526</identifier><identifier>EISSN: 1873-2135</identifier><identifier>DOI: 10.1016/j.physb.2012.11.011</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Condensed matter ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Continuum theory ; Density ; Dielectric, piezoelectric, ferroelectric and antiferroelectric materials ; Dielectrics, piezoelectrics, and ferroelectrics and their properties ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; Ferroelectric materials ; Ferroelectricity ; Free energy ; Liquid crystals ; Liquids and liquid crystals ; Mathematical analysis ; Optimization ; Phase diagram ; Phase diagrams ; Phase transition ; Physics ; Specific phase transitions ; Tilted chiral smectics ; Transitions in liquid crystals</subject><ispartof>Physica. B, Condensed matter, 2013-02, Vol.410, p.162-169</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-eaf1459419dec76413db172a158960b3e64d580b5d9cfe6b18b82ab73b99b4cd3</citedby><cites>FETCH-LOGICAL-c366t-eaf1459419dec76413db172a158960b3e64d580b5d9cfe6b18b82ab73b99b4cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physb.2012.11.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=26830626$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rjili, M.</creatorcontrib><creatorcontrib>Marcerou, J.P.</creatorcontrib><creatorcontrib>Gharbi, A.</creatorcontrib><creatorcontrib>Othman, T.</creatorcontrib><title>(α,η) phase diagrams in tilted chiral smectics</title><title>Physica. B, Condensed matter</title><description>The polymorphism of tilted chiral smectics liquid crystals is incredibly rich and encompasses many subphases such as SmCA⁎; SmCFi1⁎; SmCFi2⁎; SmC⁎; SmCα⁎. The continuum theory established by Marcerou (2010) [1] is used to derive an expression for the free energy density of those subphases. The minimization of this free energy is obtained through a combination of analytical and numerical methods. It leads to a phase diagram built in the (α,η) plane where α is local angular parameter and η describes the variation of the temperature. From this graphical representation, many experimentally observed phase sequences of ferroelectric liquid crystals can be explained, even them including subphases which were recently observed like the SmC5⁎ and the SmC6⁎ ones. However, it should be emphasized that the details of predicted phase diagram are strongly dependent on the compound studied.</description><subject>Condensed matter</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Continuum theory</subject><subject>Density</subject><subject>Dielectric, piezoelectric, ferroelectric and antiferroelectric materials</subject><subject>Dielectrics, piezoelectrics, and ferroelectrics and their properties</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Free energy</subject><subject>Liquid crystals</subject><subject>Liquids and liquid crystals</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Phase diagram</subject><subject>Phase diagrams</subject><subject>Phase transition</subject><subject>Physics</subject><subject>Specific phase transitions</subject><subject>Tilted chiral smectics</subject><subject>Transitions in liquid crystals</subject><issn>0921-4526</issn><issn>1873-2135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwBWyyQSoSCR7bcZIFC1TxkiqxgbXlV6irJC2egNTPYsVf9JtIacWS2czm3LmaQ8g50AwoyOtFtpqv0WSMAssAMgpwQEZQFjxlwPNDMqIVg1TkTB6TE8QFHQYKGBE62Xxdbb4vk9Vco09c0G9Rt5iELulD03uX2HmIukmw9bYPFk_JUa0b9Gf7PSav93cv08d09vzwNL2dpZZL2ade1yDySkDlvC2kAO4MFExDXlaSGu6lcHlJTe4qW3tpoDQl06bgpqqMsI6PyWR3dxWX7x8ee9UGtL5pdOeXH6hASJGLUnI2oHyH2rhEjL5WqxhaHdcKqNr6UQv160dt_SgANfgZUhf7Ao1WN3XUnQ34F2Wy5FQyOXA3O84P334GHxXa4DvrXYiDEuWW4d-eHy1bfBE</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Rjili, M.</creator><creator>Marcerou, J.P.</creator><creator>Gharbi, A.</creator><creator>Othman, T.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20130201</creationdate><title>(α,η) phase diagrams in tilted chiral smectics</title><author>Rjili, M. ; Marcerou, J.P. ; Gharbi, A. ; Othman, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-eaf1459419dec76413db172a158960b3e64d580b5d9cfe6b18b82ab73b99b4cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Condensed matter</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Continuum theory</topic><topic>Density</topic><topic>Dielectric, piezoelectric, ferroelectric and antiferroelectric materials</topic><topic>Dielectrics, piezoelectrics, and ferroelectrics and their properties</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Free energy</topic><topic>Liquid crystals</topic><topic>Liquids and liquid crystals</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Phase diagram</topic><topic>Phase diagrams</topic><topic>Phase transition</topic><topic>Physics</topic><topic>Specific phase transitions</topic><topic>Tilted chiral smectics</topic><topic>Transitions in liquid crystals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rjili, M.</creatorcontrib><creatorcontrib>Marcerou, J.P.</creatorcontrib><creatorcontrib>Gharbi, A.</creatorcontrib><creatorcontrib>Othman, T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. B, Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rjili, M.</au><au>Marcerou, J.P.</au><au>Gharbi, A.</au><au>Othman, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>(α,η) phase diagrams in tilted chiral smectics</atitle><jtitle>Physica. B, Condensed matter</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>410</volume><spage>162</spage><epage>169</epage><pages>162-169</pages><issn>0921-4526</issn><eissn>1873-2135</eissn><abstract>The polymorphism of tilted chiral smectics liquid crystals is incredibly rich and encompasses many subphases such as SmCA⁎; SmCFi1⁎; SmCFi2⁎; SmC⁎; SmCα⁎. The continuum theory established by Marcerou (2010) [1] is used to derive an expression for the free energy density of those subphases. The minimization of this free energy is obtained through a combination of analytical and numerical methods. It leads to a phase diagram built in the (α,η) plane where α is local angular parameter and η describes the variation of the temperature. From this graphical representation, many experimentally observed phase sequences of ferroelectric liquid crystals can be explained, even them including subphases which were recently observed like the SmC5⁎ and the SmC6⁎ ones. However, it should be emphasized that the details of predicted phase diagram are strongly dependent on the compound studied.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physb.2012.11.011</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-4526
ispartof Physica. B, Condensed matter, 2013-02, Vol.410, p.162-169
issn 0921-4526
1873-2135
language eng
recordid cdi_proquest_miscellaneous_1464548632
source ScienceDirect Journals (5 years ago - present)
subjects Condensed matter
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Continuum theory
Density
Dielectric, piezoelectric, ferroelectric and antiferroelectric materials
Dielectrics, piezoelectrics, and ferroelectrics and their properties
Equations of state, phase equilibria, and phase transitions
Exact sciences and technology
Ferroelectric materials
Ferroelectricity
Free energy
Liquid crystals
Liquids and liquid crystals
Mathematical analysis
Optimization
Phase diagram
Phase diagrams
Phase transition
Physics
Specific phase transitions
Tilted chiral smectics
Transitions in liquid crystals
title (α,η) phase diagrams in tilted chiral smectics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A39%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=(%CE%B1,%CE%B7)%20phase%20diagrams%20in%20tilted%20chiral%20smectics&rft.jtitle=Physica.%20B,%20Condensed%20matter&rft.au=Rjili,%20M.&rft.date=2013-02-01&rft.volume=410&rft.spage=162&rft.epage=169&rft.pages=162-169&rft.issn=0921-4526&rft.eissn=1873-2135&rft_id=info:doi/10.1016/j.physb.2012.11.011&rft_dat=%3Cproquest_cross%3E1464548632%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464548632&rft_id=info:pmid/&rft_els_id=S0921452612009994&rfr_iscdi=true