(α,η) phase diagrams in tilted chiral smectics
The polymorphism of tilted chiral smectics liquid crystals is incredibly rich and encompasses many subphases such as SmCA⁎; SmCFi1⁎; SmCFi2⁎; SmC⁎; SmCα⁎. The continuum theory established by Marcerou (2010) [1] is used to derive an expression for the free energy density of those subphases. The minim...
Gespeichert in:
Veröffentlicht in: | Physica. B, Condensed matter Condensed matter, 2013-02, Vol.410, p.162-169 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 169 |
---|---|
container_issue | |
container_start_page | 162 |
container_title | Physica. B, Condensed matter |
container_volume | 410 |
creator | Rjili, M. Marcerou, J.P. Gharbi, A. Othman, T. |
description | The polymorphism of tilted chiral smectics liquid crystals is incredibly rich and encompasses many subphases such as SmCA⁎; SmCFi1⁎; SmCFi2⁎; SmC⁎; SmCα⁎. The continuum theory established by Marcerou (2010) [1] is used to derive an expression for the free energy density of those subphases. The minimization of this free energy is obtained through a combination of analytical and numerical methods. It leads to a phase diagram built in the (α,η) plane where α is local angular parameter and η describes the variation of the temperature. From this graphical representation, many experimentally observed phase sequences of ferroelectric liquid crystals can be explained, even them including subphases which were recently observed like the SmC5⁎ and the SmC6⁎ ones. However, it should be emphasized that the details of predicted phase diagram are strongly dependent on the compound studied. |
doi_str_mv | 10.1016/j.physb.2012.11.011 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1464548632</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921452612009994</els_id><sourcerecordid>1464548632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c366t-eaf1459419dec76413db172a158960b3e64d580b5d9cfe6b18b82ab73b99b4cd3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwBWyyQSoSCR7bcZIFC1TxkiqxgbXlV6irJC2egNTPYsVf9JtIacWS2czm3LmaQ8g50AwoyOtFtpqv0WSMAssAMgpwQEZQFjxlwPNDMqIVg1TkTB6TE8QFHQYKGBE62Xxdbb4vk9Vco09c0G9Rt5iELulD03uX2HmIukmw9bYPFk_JUa0b9Gf7PSav93cv08d09vzwNL2dpZZL2ade1yDySkDlvC2kAO4MFExDXlaSGu6lcHlJTe4qW3tpoDQl06bgpqqMsI6PyWR3dxWX7x8ee9UGtL5pdOeXH6hASJGLUnI2oHyH2rhEjL5WqxhaHdcKqNr6UQv160dt_SgANfgZUhf7Ao1WN3XUnQ34F2Wy5FQyOXA3O84P334GHxXa4DvrXYiDEuWW4d-eHy1bfBE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464548632</pqid></control><display><type>article</type><title>(α,η) phase diagrams in tilted chiral smectics</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Rjili, M. ; Marcerou, J.P. ; Gharbi, A. ; Othman, T.</creator><creatorcontrib>Rjili, M. ; Marcerou, J.P. ; Gharbi, A. ; Othman, T.</creatorcontrib><description>The polymorphism of tilted chiral smectics liquid crystals is incredibly rich and encompasses many subphases such as SmCA⁎; SmCFi1⁎; SmCFi2⁎; SmC⁎; SmCα⁎. The continuum theory established by Marcerou (2010) [1] is used to derive an expression for the free energy density of those subphases. The minimization of this free energy is obtained through a combination of analytical and numerical methods. It leads to a phase diagram built in the (α,η) plane where α is local angular parameter and η describes the variation of the temperature. From this graphical representation, many experimentally observed phase sequences of ferroelectric liquid crystals can be explained, even them including subphases which were recently observed like the SmC5⁎ and the SmC6⁎ ones. However, it should be emphasized that the details of predicted phase diagram are strongly dependent on the compound studied.</description><identifier>ISSN: 0921-4526</identifier><identifier>EISSN: 1873-2135</identifier><identifier>DOI: 10.1016/j.physb.2012.11.011</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Condensed matter ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Continuum theory ; Density ; Dielectric, piezoelectric, ferroelectric and antiferroelectric materials ; Dielectrics, piezoelectrics, and ferroelectrics and their properties ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; Ferroelectric materials ; Ferroelectricity ; Free energy ; Liquid crystals ; Liquids and liquid crystals ; Mathematical analysis ; Optimization ; Phase diagram ; Phase diagrams ; Phase transition ; Physics ; Specific phase transitions ; Tilted chiral smectics ; Transitions in liquid crystals</subject><ispartof>Physica. B, Condensed matter, 2013-02, Vol.410, p.162-169</ispartof><rights>2012 Elsevier B.V.</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c366t-eaf1459419dec76413db172a158960b3e64d580b5d9cfe6b18b82ab73b99b4cd3</citedby><cites>FETCH-LOGICAL-c366t-eaf1459419dec76413db172a158960b3e64d580b5d9cfe6b18b82ab73b99b4cd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.physb.2012.11.011$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26830626$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Rjili, M.</creatorcontrib><creatorcontrib>Marcerou, J.P.</creatorcontrib><creatorcontrib>Gharbi, A.</creatorcontrib><creatorcontrib>Othman, T.</creatorcontrib><title>(α,η) phase diagrams in tilted chiral smectics</title><title>Physica. B, Condensed matter</title><description>The polymorphism of tilted chiral smectics liquid crystals is incredibly rich and encompasses many subphases such as SmCA⁎; SmCFi1⁎; SmCFi2⁎; SmC⁎; SmCα⁎. The continuum theory established by Marcerou (2010) [1] is used to derive an expression for the free energy density of those subphases. The minimization of this free energy is obtained through a combination of analytical and numerical methods. It leads to a phase diagram built in the (α,η) plane where α is local angular parameter and η describes the variation of the temperature. From this graphical representation, many experimentally observed phase sequences of ferroelectric liquid crystals can be explained, even them including subphases which were recently observed like the SmC5⁎ and the SmC6⁎ ones. However, it should be emphasized that the details of predicted phase diagram are strongly dependent on the compound studied.</description><subject>Condensed matter</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Continuum theory</subject><subject>Density</subject><subject>Dielectric, piezoelectric, ferroelectric and antiferroelectric materials</subject><subject>Dielectrics, piezoelectrics, and ferroelectrics and their properties</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Free energy</subject><subject>Liquid crystals</subject><subject>Liquids and liquid crystals</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Phase diagram</subject><subject>Phase diagrams</subject><subject>Phase transition</subject><subject>Physics</subject><subject>Specific phase transitions</subject><subject>Tilted chiral smectics</subject><subject>Transitions in liquid crystals</subject><issn>0921-4526</issn><issn>1873-2135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwBWyyQSoSCR7bcZIFC1TxkiqxgbXlV6irJC2egNTPYsVf9JtIacWS2czm3LmaQ8g50AwoyOtFtpqv0WSMAssAMgpwQEZQFjxlwPNDMqIVg1TkTB6TE8QFHQYKGBE62Xxdbb4vk9Vco09c0G9Rt5iELulD03uX2HmIukmw9bYPFk_JUa0b9Gf7PSav93cv08d09vzwNL2dpZZL2ade1yDySkDlvC2kAO4MFExDXlaSGu6lcHlJTe4qW3tpoDQl06bgpqqMsI6PyWR3dxWX7x8ee9UGtL5pdOeXH6hASJGLUnI2oHyH2rhEjL5WqxhaHdcKqNr6UQv160dt_SgANfgZUhf7Ao1WN3XUnQ34F2Wy5FQyOXA3O84P334GHxXa4DvrXYiDEuWW4d-eHy1bfBE</recordid><startdate>20130201</startdate><enddate>20130201</enddate><creator>Rjili, M.</creator><creator>Marcerou, J.P.</creator><creator>Gharbi, A.</creator><creator>Othman, T.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20130201</creationdate><title>(α,η) phase diagrams in tilted chiral smectics</title><author>Rjili, M. ; Marcerou, J.P. ; Gharbi, A. ; Othman, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c366t-eaf1459419dec76413db172a158960b3e64d580b5d9cfe6b18b82ab73b99b4cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Condensed matter</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Continuum theory</topic><topic>Density</topic><topic>Dielectric, piezoelectric, ferroelectric and antiferroelectric materials</topic><topic>Dielectrics, piezoelectrics, and ferroelectrics and their properties</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Free energy</topic><topic>Liquid crystals</topic><topic>Liquids and liquid crystals</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Phase diagram</topic><topic>Phase diagrams</topic><topic>Phase transition</topic><topic>Physics</topic><topic>Specific phase transitions</topic><topic>Tilted chiral smectics</topic><topic>Transitions in liquid crystals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rjili, M.</creatorcontrib><creatorcontrib>Marcerou, J.P.</creatorcontrib><creatorcontrib>Gharbi, A.</creatorcontrib><creatorcontrib>Othman, T.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. B, Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rjili, M.</au><au>Marcerou, J.P.</au><au>Gharbi, A.</au><au>Othman, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>(α,η) phase diagrams in tilted chiral smectics</atitle><jtitle>Physica. B, Condensed matter</jtitle><date>2013-02-01</date><risdate>2013</risdate><volume>410</volume><spage>162</spage><epage>169</epage><pages>162-169</pages><issn>0921-4526</issn><eissn>1873-2135</eissn><abstract>The polymorphism of tilted chiral smectics liquid crystals is incredibly rich and encompasses many subphases such as SmCA⁎; SmCFi1⁎; SmCFi2⁎; SmC⁎; SmCα⁎. The continuum theory established by Marcerou (2010) [1] is used to derive an expression for the free energy density of those subphases. The minimization of this free energy is obtained through a combination of analytical and numerical methods. It leads to a phase diagram built in the (α,η) plane where α is local angular parameter and η describes the variation of the temperature. From this graphical representation, many experimentally observed phase sequences of ferroelectric liquid crystals can be explained, even them including subphases which were recently observed like the SmC5⁎ and the SmC6⁎ ones. However, it should be emphasized that the details of predicted phase diagram are strongly dependent on the compound studied.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physb.2012.11.011</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-4526 |
ispartof | Physica. B, Condensed matter, 2013-02, Vol.410, p.162-169 |
issn | 0921-4526 1873-2135 |
language | eng |
recordid | cdi_proquest_miscellaneous_1464548632 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Condensed matter Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Continuum theory Density Dielectric, piezoelectric, ferroelectric and antiferroelectric materials Dielectrics, piezoelectrics, and ferroelectrics and their properties Equations of state, phase equilibria, and phase transitions Exact sciences and technology Ferroelectric materials Ferroelectricity Free energy Liquid crystals Liquids and liquid crystals Mathematical analysis Optimization Phase diagram Phase diagrams Phase transition Physics Specific phase transitions Tilted chiral smectics Transitions in liquid crystals |
title | (α,η) phase diagrams in tilted chiral smectics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T01%3A39%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=(%CE%B1,%CE%B7)%20phase%20diagrams%20in%20tilted%20chiral%20smectics&rft.jtitle=Physica.%20B,%20Condensed%20matter&rft.au=Rjili,%20M.&rft.date=2013-02-01&rft.volume=410&rft.spage=162&rft.epage=169&rft.pages=162-169&rft.issn=0921-4526&rft.eissn=1873-2135&rft_id=info:doi/10.1016/j.physb.2012.11.011&rft_dat=%3Cproquest_cross%3E1464548632%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464548632&rft_id=info:pmid/&rft_els_id=S0921452612009994&rfr_iscdi=true |