Lumped mass finite element implementation of continuum theories with micro-inertia

SUMMARYContinuum theories can be equipped with additional inertia terms to make them capable of capturing wave dispersion effects observed in micro‐structured materials. Such terms, often called micro‐inertia, are convenient and straightforward extensions of classical continuum theories. Furthermore...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2013-11, Vol.96 (7), p.448-466
Hauptverfasser: Lombardo, Mariateresa, Askes, Harm
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 466
container_issue 7
container_start_page 448
container_title International journal for numerical methods in engineering
container_volume 96
creator Lombardo, Mariateresa
Askes, Harm
description SUMMARYContinuum theories can be equipped with additional inertia terms to make them capable of capturing wave dispersion effects observed in micro‐structured materials. Such terms, often called micro‐inertia, are convenient and straightforward extensions of classical continuum theories. Furthermore, the critical time step is usually increased via the inclusion of micro‐inertia. However, the drawback exists that standard finite element discretisation leads to mass matrices that cannot be lumped without losing the micro‐inertia terms. In this paper, we will develop a solution algorithm based on Neumann expansions by which this disadvantage is avoided altogether. The micro‐inertia terms are translated into modifications of the residual force vector, so that the system matrix is the usual lumped mass matrix and all advantages of explicit time integration are maintained. The numerical stability of the algorithm and its effect on the dispersive properties of the model are studied in detail. Numerical examples are used to illustrate the various aspects of the algorithm. Copyright © 2013 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nme.4570
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1464546791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1464546791</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3940-50ee10d6413097efb1fc17f9c283be745f2dcd092b3a69fb2251acfdf1a408633</originalsourceid><addsrcrecordid>eNp1kF1rFDEUhoMouLaCPyEggjfT5nOyuZTSL9hupVXsXchmTmjqJLMmGWr_vSm7VBC8OgfOw8N7XoQ-UHJECWHHKcKRkIq8QgtKtOoII-o1WrST7qRe0rfoXSkPhFAqCV-gm9UctzDgaEvBPqRQAcMIEVLFIW53m61hSnjy2E2phjTPEdd7mHKAgh9DvccxuDx1IUGuwR6iN96OBd7v5wH6fnb67eSiW12fX558WXWOa0E6SQAoGXpBecsJfkO9o8prx5Z8A0pIzwY3EM023PbabxiT1Do_eGoFWfacH6DPO-82T79mKNXEUByMo00wzcVQ0QspeqVpQz_-gz5Mc04tXaMEo7ynhP0VtmdKyeDNNodo85OhxDyXa1q55rnchn7aC21xdvTZJhfKC8-Ulkwx2bhuxz2GEZ7-6zPrq9O9d8-HUuH3C2_zT9MrrqT5sT43t1fk7uvdmpkL_gfilZcH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1442136102</pqid></control><display><type>article</type><title>Lumped mass finite element implementation of continuum theories with micro-inertia</title><source>Wiley Online Library All Journals</source><creator>Lombardo, Mariateresa ; Askes, Harm</creator><creatorcontrib>Lombardo, Mariateresa ; Askes, Harm</creatorcontrib><description>SUMMARYContinuum theories can be equipped with additional inertia terms to make them capable of capturing wave dispersion effects observed in micro‐structured materials. Such terms, often called micro‐inertia, are convenient and straightforward extensions of classical continuum theories. Furthermore, the critical time step is usually increased via the inclusion of micro‐inertia. However, the drawback exists that standard finite element discretisation leads to mass matrices that cannot be lumped without losing the micro‐inertia terms. In this paper, we will develop a solution algorithm based on Neumann expansions by which this disadvantage is avoided altogether. The micro‐inertia terms are translated into modifications of the residual force vector, so that the system matrix is the usual lumped mass matrix and all advantages of explicit time integration are maintained. The numerical stability of the algorithm and its effect on the dispersive properties of the model are studied in detail. Numerical examples are used to illustrate the various aspects of the algorithm. Copyright © 2013 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.4570</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Chichester: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Continuums ; critical time step ; Exact sciences and technology ; explicit dynamics ; Finite element method ; Fundamental areas of phenomenology (including applications) ; Inertia ; length scale ; lumped mass ; Mathematical analysis ; Mathematical models ; micro-inertia ; Neumann expansion ; Physics ; Solid mechanics ; Static elasticity (thermoelasticity...) ; Structural and continuum mechanics ; Time integration ; Vectors (mathematics)</subject><ispartof>International journal for numerical methods in engineering, 2013-11, Vol.96 (7), p.448-466</ispartof><rights>Copyright © 2013 John Wiley &amp; Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3940-50ee10d6413097efb1fc17f9c283be745f2dcd092b3a69fb2251acfdf1a408633</citedby><cites>FETCH-LOGICAL-c3940-50ee10d6413097efb1fc17f9c283be745f2dcd092b3a69fb2251acfdf1a408633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnme.4570$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnme.4570$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1416,27923,27924,45573,45574</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27952725$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lombardo, Mariateresa</creatorcontrib><creatorcontrib>Askes, Harm</creatorcontrib><title>Lumped mass finite element implementation of continuum theories with micro-inertia</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>SUMMARYContinuum theories can be equipped with additional inertia terms to make them capable of capturing wave dispersion effects observed in micro‐structured materials. Such terms, often called micro‐inertia, are convenient and straightforward extensions of classical continuum theories. Furthermore, the critical time step is usually increased via the inclusion of micro‐inertia. However, the drawback exists that standard finite element discretisation leads to mass matrices that cannot be lumped without losing the micro‐inertia terms. In this paper, we will develop a solution algorithm based on Neumann expansions by which this disadvantage is avoided altogether. The micro‐inertia terms are translated into modifications of the residual force vector, so that the system matrix is the usual lumped mass matrix and all advantages of explicit time integration are maintained. The numerical stability of the algorithm and its effect on the dispersive properties of the model are studied in detail. Numerical examples are used to illustrate the various aspects of the algorithm. Copyright © 2013 John Wiley &amp; Sons, Ltd.</description><subject>Algorithms</subject><subject>Continuums</subject><subject>critical time step</subject><subject>Exact sciences and technology</subject><subject>explicit dynamics</subject><subject>Finite element method</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Inertia</subject><subject>length scale</subject><subject>lumped mass</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>micro-inertia</subject><subject>Neumann expansion</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Static elasticity (thermoelasticity...)</subject><subject>Structural and continuum mechanics</subject><subject>Time integration</subject><subject>Vectors (mathematics)</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kF1rFDEUhoMouLaCPyEggjfT5nOyuZTSL9hupVXsXchmTmjqJLMmGWr_vSm7VBC8OgfOw8N7XoQ-UHJECWHHKcKRkIq8QgtKtOoII-o1WrST7qRe0rfoXSkPhFAqCV-gm9UctzDgaEvBPqRQAcMIEVLFIW53m61hSnjy2E2phjTPEdd7mHKAgh9DvccxuDx1IUGuwR6iN96OBd7v5wH6fnb67eSiW12fX558WXWOa0E6SQAoGXpBecsJfkO9o8prx5Z8A0pIzwY3EM023PbabxiT1Do_eGoFWfacH6DPO-82T79mKNXEUByMo00wzcVQ0QspeqVpQz_-gz5Mc04tXaMEo7ynhP0VtmdKyeDNNodo85OhxDyXa1q55rnchn7aC21xdvTZJhfKC8-Ulkwx2bhuxz2GEZ7-6zPrq9O9d8-HUuH3C2_zT9MrrqT5sT43t1fk7uvdmpkL_gfilZcH</recordid><startdate>20131116</startdate><enddate>20131116</enddate><creator>Lombardo, Mariateresa</creator><creator>Askes, Harm</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131116</creationdate><title>Lumped mass finite element implementation of continuum theories with micro-inertia</title><author>Lombardo, Mariateresa ; Askes, Harm</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3940-50ee10d6413097efb1fc17f9c283be745f2dcd092b3a69fb2251acfdf1a408633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Continuums</topic><topic>critical time step</topic><topic>Exact sciences and technology</topic><topic>explicit dynamics</topic><topic>Finite element method</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Inertia</topic><topic>length scale</topic><topic>lumped mass</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>micro-inertia</topic><topic>Neumann expansion</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Static elasticity (thermoelasticity...)</topic><topic>Structural and continuum mechanics</topic><topic>Time integration</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lombardo, Mariateresa</creatorcontrib><creatorcontrib>Askes, Harm</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lombardo, Mariateresa</au><au>Askes, Harm</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lumped mass finite element implementation of continuum theories with micro-inertia</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2013-11-16</date><risdate>2013</risdate><volume>96</volume><issue>7</issue><spage>448</spage><epage>466</epage><pages>448-466</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>SUMMARYContinuum theories can be equipped with additional inertia terms to make them capable of capturing wave dispersion effects observed in micro‐structured materials. Such terms, often called micro‐inertia, are convenient and straightforward extensions of classical continuum theories. Furthermore, the critical time step is usually increased via the inclusion of micro‐inertia. However, the drawback exists that standard finite element discretisation leads to mass matrices that cannot be lumped without losing the micro‐inertia terms. In this paper, we will develop a solution algorithm based on Neumann expansions by which this disadvantage is avoided altogether. The micro‐inertia terms are translated into modifications of the residual force vector, so that the system matrix is the usual lumped mass matrix and all advantages of explicit time integration are maintained. The numerical stability of the algorithm and its effect on the dispersive properties of the model are studied in detail. Numerical examples are used to illustrate the various aspects of the algorithm. Copyright © 2013 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/nme.4570</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2013-11, Vol.96 (7), p.448-466
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_miscellaneous_1464546791
source Wiley Online Library All Journals
subjects Algorithms
Continuums
critical time step
Exact sciences and technology
explicit dynamics
Finite element method
Fundamental areas of phenomenology (including applications)
Inertia
length scale
lumped mass
Mathematical analysis
Mathematical models
micro-inertia
Neumann expansion
Physics
Solid mechanics
Static elasticity (thermoelasticity...)
Structural and continuum mechanics
Time integration
Vectors (mathematics)
title Lumped mass finite element implementation of continuum theories with micro-inertia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A01%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lumped%20mass%20finite%20element%20implementation%20of%20continuum%20theories%20with%20micro-inertia&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Lombardo,%20Mariateresa&rft.date=2013-11-16&rft.volume=96&rft.issue=7&rft.spage=448&rft.epage=466&rft.pages=448-466&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.4570&rft_dat=%3Cproquest_cross%3E1464546791%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1442136102&rft_id=info:pmid/&rfr_iscdi=true