Long-range-ordered, hexagonally packed nanoporous membranes from degradable-block-containing diblock copolymer film templates
ABSTRACT Polystyrene (PS)‐b‐polylactide (PLA) diblock copolymers with different molecular weights and fractions were synthesized through a combination of living anionic polymerization and controlled ring‐opening polymerization. Then, the PS–PLA films were guided to phase‐separate by self‐assembly in...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2014-01, Vol.131 (1), p.np-n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | np |
container_title | Journal of applied polymer science |
container_volume | 131 |
creator | Lei, Lei Xia, Yuzheng Chen, Xiaonong Shi, Shuxian |
description | ABSTRACT
Polystyrene (PS)‐b‐polylactide (PLA) diblock copolymers with different molecular weights and fractions were synthesized through a combination of living anionic polymerization and controlled ring‐opening polymerization. Then, the PS–PLA films were guided to phase‐separate by self‐assembly into different morphologies through casting solvent selection, solvent evaporation, and thermal and solvent‐field regulation. Finally, perpendicularly oriented PS–PLA films were used as precursors for PS membranes with an ordered periodic nanoporous structure; this was achieved by the selective etching of the segregated PLA domains dispersed in a continuous matrix of PS. Testing techniques, including IR, 1H‐NMR, gel permeation chromatography, scanning electron microscopy (SEM), and atomic force microscopy (AFM), were used to determine the chemical structure of the PS–PLA copolymer and its film morphology. AFM images of the self‐assembled PS‐PLA films indicate that vertical tapers of the PLA domains were generated among PS continuum when either toluene or tetrahydrofuran was used as the annealing solvent. The SEM images certified that the chemical etching of the PLA component from the self‐assembled PS–PLA films led to a long‐range‐ordered array of hexagonally packed nanoporous membranes with a diameter about 500 nm and a center‐to‐center distance of 1700 nm. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 39638. |
doi_str_mv | 10.1002/app.39638 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1464546626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3097619991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4358-ffb348992d880d211bb42b1d168a4a956dce1ffbab542e9e23646b6b612b1b813</originalsourceid><addsrcrecordid>eNp1kV1rFDEUhgdRcK1e-A8CIiiYdvI5mctS2iosWhbFy5CPM-N0M5MxmcXuhf_dbLf2QpBzETh53pdzzltVr0l9Suqanpl5PmWtZOpJtSJ122AuqXparcofwaptxfPqRc63dU2IqOWq-r2OU4-TmXrAMXlI4D-gH3Bn-jiZEPZoNm4LHk1minNMcZfRCKMtAsioS3FEHvpkvLEBsA3RbbGL02KGaZh65If7FnJFG_YjJNQNYUQLjHMwC-SX1bPOhAyvHt6T6tvV5deLj3j95frTxfkaO86Ewl1nGS_DU69U7Skh1nJqiSdSGW5aIb0DUiBjBafQAmWSS1uKFMoqwk6qd0ffOcWfO8iLHofsIISyRllJEy654FJSWdA3_6C3cZfKLQ4UJ1Iw3tSFen-kXIo5J-j0nIbRpL0mtT4EoUsQ-j6Iwr59cDTZmdCV27khPwqookw04sCdHblfQ4D9_w31-c3NX2d8VAx5gbtHhUlbLRvWCP3987VWZLPZEHmlFfsD-J2n9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1441653470</pqid></control><display><type>article</type><title>Long-range-ordered, hexagonally packed nanoporous membranes from degradable-block-containing diblock copolymer film templates</title><source>Access via Wiley Online Library</source><creator>Lei, Lei ; Xia, Yuzheng ; Chen, Xiaonong ; Shi, Shuxian</creator><creatorcontrib>Lei, Lei ; Xia, Yuzheng ; Chen, Xiaonong ; Shi, Shuxian</creatorcontrib><description>ABSTRACT
Polystyrene (PS)‐b‐polylactide (PLA) diblock copolymers with different molecular weights and fractions were synthesized through a combination of living anionic polymerization and controlled ring‐opening polymerization. Then, the PS–PLA films were guided to phase‐separate by self‐assembly into different morphologies through casting solvent selection, solvent evaporation, and thermal and solvent‐field regulation. Finally, perpendicularly oriented PS–PLA films were used as precursors for PS membranes with an ordered periodic nanoporous structure; this was achieved by the selective etching of the segregated PLA domains dispersed in a continuous matrix of PS. Testing techniques, including IR, 1H‐NMR, gel permeation chromatography, scanning electron microscopy (SEM), and atomic force microscopy (AFM), were used to determine the chemical structure of the PS–PLA copolymer and its film morphology. AFM images of the self‐assembled PS‐PLA films indicate that vertical tapers of the PLA domains were generated among PS continuum when either toluene or tetrahydrofuran was used as the annealing solvent. The SEM images certified that the chemical etching of the PLA component from the self‐assembled PS–PLA films led to a long‐range‐ordered array of hexagonally packed nanoporous membranes with a diameter about 500 nm and a center‐to‐center distance of 1700 nm. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 39638.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.39638</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>Hoboken, NJ: Blackwell Publishing Ltd</publisher><subject>Applied sciences ; Atomic force microscopy ; biodegradable ; Copolymers ; Exact sciences and technology ; Exchange resins and membranes ; Forms of application and semi-finished materials ; Materials science ; Membranes ; Nanocomposites ; Nanomaterials ; Nanostructure ; Polymer industry, paints, wood ; Polymers ; polystyrene ; Scanning electron microscopy ; self-assembly ; Solvents ; Technology of polymers</subject><ispartof>Journal of applied polymer science, 2014-01, Vol.131 (1), p.np-n/a</ispartof><rights>Copyright © 2013 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4358-ffb348992d880d211bb42b1d168a4a956dce1ffbab542e9e23646b6b612b1b813</citedby><cites>FETCH-LOGICAL-c4358-ffb348992d880d211bb42b1d168a4a956dce1ffbab542e9e23646b6b612b1b813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.39638$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.39638$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28235758$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lei, Lei</creatorcontrib><creatorcontrib>Xia, Yuzheng</creatorcontrib><creatorcontrib>Chen, Xiaonong</creatorcontrib><creatorcontrib>Shi, Shuxian</creatorcontrib><title>Long-range-ordered, hexagonally packed nanoporous membranes from degradable-block-containing diblock copolymer film templates</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>ABSTRACT
Polystyrene (PS)‐b‐polylactide (PLA) diblock copolymers with different molecular weights and fractions were synthesized through a combination of living anionic polymerization and controlled ring‐opening polymerization. Then, the PS–PLA films were guided to phase‐separate by self‐assembly into different morphologies through casting solvent selection, solvent evaporation, and thermal and solvent‐field regulation. Finally, perpendicularly oriented PS–PLA films were used as precursors for PS membranes with an ordered periodic nanoporous structure; this was achieved by the selective etching of the segregated PLA domains dispersed in a continuous matrix of PS. Testing techniques, including IR, 1H‐NMR, gel permeation chromatography, scanning electron microscopy (SEM), and atomic force microscopy (AFM), were used to determine the chemical structure of the PS–PLA copolymer and its film morphology. AFM images of the self‐assembled PS‐PLA films indicate that vertical tapers of the PLA domains were generated among PS continuum when either toluene or tetrahydrofuran was used as the annealing solvent. The SEM images certified that the chemical etching of the PLA component from the self‐assembled PS–PLA films led to a long‐range‐ordered array of hexagonally packed nanoporous membranes with a diameter about 500 nm and a center‐to‐center distance of 1700 nm. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 39638.</description><subject>Applied sciences</subject><subject>Atomic force microscopy</subject><subject>biodegradable</subject><subject>Copolymers</subject><subject>Exact sciences and technology</subject><subject>Exchange resins and membranes</subject><subject>Forms of application and semi-finished materials</subject><subject>Materials science</subject><subject>Membranes</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Polymer industry, paints, wood</subject><subject>Polymers</subject><subject>polystyrene</subject><subject>Scanning electron microscopy</subject><subject>self-assembly</subject><subject>Solvents</subject><subject>Technology of polymers</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kV1rFDEUhgdRcK1e-A8CIiiYdvI5mctS2iosWhbFy5CPM-N0M5MxmcXuhf_dbLf2QpBzETh53pdzzltVr0l9Suqanpl5PmWtZOpJtSJ122AuqXparcofwaptxfPqRc63dU2IqOWq-r2OU4-TmXrAMXlI4D-gH3Bn-jiZEPZoNm4LHk1minNMcZfRCKMtAsioS3FEHvpkvLEBsA3RbbGL02KGaZh65If7FnJFG_YjJNQNYUQLjHMwC-SX1bPOhAyvHt6T6tvV5deLj3j95frTxfkaO86Ewl1nGS_DU69U7Skh1nJqiSdSGW5aIb0DUiBjBafQAmWSS1uKFMoqwk6qd0ffOcWfO8iLHofsIISyRllJEy654FJSWdA3_6C3cZfKLQ4UJ1Iw3tSFen-kXIo5J-j0nIbRpL0mtT4EoUsQ-j6Iwr59cDTZmdCV27khPwqookw04sCdHblfQ4D9_w31-c3NX2d8VAx5gbtHhUlbLRvWCP3987VWZLPZEHmlFfsD-J2n9Q</recordid><startdate>20140105</startdate><enddate>20140105</enddate><creator>Lei, Lei</creator><creator>Xia, Yuzheng</creator><creator>Chen, Xiaonong</creator><creator>Shi, Shuxian</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20140105</creationdate><title>Long-range-ordered, hexagonally packed nanoporous membranes from degradable-block-containing diblock copolymer film templates</title><author>Lei, Lei ; Xia, Yuzheng ; Chen, Xiaonong ; Shi, Shuxian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4358-ffb348992d880d211bb42b1d168a4a956dce1ffbab542e9e23646b6b612b1b813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Atomic force microscopy</topic><topic>biodegradable</topic><topic>Copolymers</topic><topic>Exact sciences and technology</topic><topic>Exchange resins and membranes</topic><topic>Forms of application and semi-finished materials</topic><topic>Materials science</topic><topic>Membranes</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Polymer industry, paints, wood</topic><topic>Polymers</topic><topic>polystyrene</topic><topic>Scanning electron microscopy</topic><topic>self-assembly</topic><topic>Solvents</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, Lei</creatorcontrib><creatorcontrib>Xia, Yuzheng</creatorcontrib><creatorcontrib>Chen, Xiaonong</creatorcontrib><creatorcontrib>Shi, Shuxian</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, Lei</au><au>Xia, Yuzheng</au><au>Chen, Xiaonong</au><au>Shi, Shuxian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-range-ordered, hexagonally packed nanoporous membranes from degradable-block-containing diblock copolymer film templates</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2014-01-05</date><risdate>2014</risdate><volume>131</volume><issue>1</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>0021-8995</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>ABSTRACT
Polystyrene (PS)‐b‐polylactide (PLA) diblock copolymers with different molecular weights and fractions were synthesized through a combination of living anionic polymerization and controlled ring‐opening polymerization. Then, the PS–PLA films were guided to phase‐separate by self‐assembly into different morphologies through casting solvent selection, solvent evaporation, and thermal and solvent‐field regulation. Finally, perpendicularly oriented PS–PLA films were used as precursors for PS membranes with an ordered periodic nanoporous structure; this was achieved by the selective etching of the segregated PLA domains dispersed in a continuous matrix of PS. Testing techniques, including IR, 1H‐NMR, gel permeation chromatography, scanning electron microscopy (SEM), and atomic force microscopy (AFM), were used to determine the chemical structure of the PS–PLA copolymer and its film morphology. AFM images of the self‐assembled PS‐PLA films indicate that vertical tapers of the PLA domains were generated among PS continuum when either toluene or tetrahydrofuran was used as the annealing solvent. The SEM images certified that the chemical etching of the PLA component from the self‐assembled PS–PLA films led to a long‐range‐ordered array of hexagonally packed nanoporous membranes with a diameter about 500 nm and a center‐to‐center distance of 1700 nm. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 39638.</abstract><cop>Hoboken, NJ</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/app.39638</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8995 |
ispartof | Journal of applied polymer science, 2014-01, Vol.131 (1), p.np-n/a |
issn | 0021-8995 1097-4628 |
language | eng |
recordid | cdi_proquest_miscellaneous_1464546626 |
source | Access via Wiley Online Library |
subjects | Applied sciences Atomic force microscopy biodegradable Copolymers Exact sciences and technology Exchange resins and membranes Forms of application and semi-finished materials Materials science Membranes Nanocomposites Nanomaterials Nanostructure Polymer industry, paints, wood Polymers polystyrene Scanning electron microscopy self-assembly Solvents Technology of polymers |
title | Long-range-ordered, hexagonally packed nanoporous membranes from degradable-block-containing diblock copolymer film templates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A30%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-range-ordered,%20hexagonally%20packed%20nanoporous%20membranes%20from%20degradable-block-containing%20diblock%20copolymer%20film%20templates&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Lei,%20Lei&rft.date=2014-01-05&rft.volume=131&rft.issue=1&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.39638&rft_dat=%3Cproquest_cross%3E3097619991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1441653470&rft_id=info:pmid/&rfr_iscdi=true |