Long-range-ordered, hexagonally packed nanoporous membranes from degradable-block-containing diblock copolymer film templates

ABSTRACT Polystyrene (PS)‐b‐polylactide (PLA) diblock copolymers with different molecular weights and fractions were synthesized through a combination of living anionic polymerization and controlled ring‐opening polymerization. Then, the PS–PLA films were guided to phase‐separate by self‐assembly in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2014-01, Vol.131 (1), p.np-n/a
Hauptverfasser: Lei, Lei, Xia, Yuzheng, Chen, Xiaonong, Shi, Shuxian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page np
container_title Journal of applied polymer science
container_volume 131
creator Lei, Lei
Xia, Yuzheng
Chen, Xiaonong
Shi, Shuxian
description ABSTRACT Polystyrene (PS)‐b‐polylactide (PLA) diblock copolymers with different molecular weights and fractions were synthesized through a combination of living anionic polymerization and controlled ring‐opening polymerization. Then, the PS–PLA films were guided to phase‐separate by self‐assembly into different morphologies through casting solvent selection, solvent evaporation, and thermal and solvent‐field regulation. Finally, perpendicularly oriented PS–PLA films were used as precursors for PS membranes with an ordered periodic nanoporous structure; this was achieved by the selective etching of the segregated PLA domains dispersed in a continuous matrix of PS. Testing techniques, including IR, 1H‐NMR, gel permeation chromatography, scanning electron microscopy (SEM), and atomic force microscopy (AFM), were used to determine the chemical structure of the PS–PLA copolymer and its film morphology. AFM images of the self‐assembled PS‐PLA films indicate that vertical tapers of the PLA domains were generated among PS continuum when either toluene or tetrahydrofuran was used as the annealing solvent. The SEM images certified that the chemical etching of the PLA component from the self‐assembled PS–PLA films led to a long‐range‐ordered array of hexagonally packed nanoporous membranes with a diameter about 500 nm and a center‐to‐center distance of 1700 nm. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 39638.
doi_str_mv 10.1002/app.39638
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1464546626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3097619991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4358-ffb348992d880d211bb42b1d168a4a956dce1ffbab542e9e23646b6b612b1b813</originalsourceid><addsrcrecordid>eNp1kV1rFDEUhgdRcK1e-A8CIiiYdvI5mctS2iosWhbFy5CPM-N0M5MxmcXuhf_dbLf2QpBzETh53pdzzltVr0l9Suqanpl5PmWtZOpJtSJ122AuqXparcofwaptxfPqRc63dU2IqOWq-r2OU4-TmXrAMXlI4D-gH3Bn-jiZEPZoNm4LHk1minNMcZfRCKMtAsioS3FEHvpkvLEBsA3RbbGL02KGaZh65If7FnJFG_YjJNQNYUQLjHMwC-SX1bPOhAyvHt6T6tvV5deLj3j95frTxfkaO86Ewl1nGS_DU69U7Skh1nJqiSdSGW5aIb0DUiBjBafQAmWSS1uKFMoqwk6qd0ffOcWfO8iLHofsIISyRllJEy654FJSWdA3_6C3cZfKLQ4UJ1Iw3tSFen-kXIo5J-j0nIbRpL0mtT4EoUsQ-j6Iwr59cDTZmdCV27khPwqookw04sCdHblfQ4D9_w31-c3NX2d8VAx5gbtHhUlbLRvWCP3987VWZLPZEHmlFfsD-J2n9Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1441653470</pqid></control><display><type>article</type><title>Long-range-ordered, hexagonally packed nanoporous membranes from degradable-block-containing diblock copolymer film templates</title><source>Access via Wiley Online Library</source><creator>Lei, Lei ; Xia, Yuzheng ; Chen, Xiaonong ; Shi, Shuxian</creator><creatorcontrib>Lei, Lei ; Xia, Yuzheng ; Chen, Xiaonong ; Shi, Shuxian</creatorcontrib><description>ABSTRACT Polystyrene (PS)‐b‐polylactide (PLA) diblock copolymers with different molecular weights and fractions were synthesized through a combination of living anionic polymerization and controlled ring‐opening polymerization. Then, the PS–PLA films were guided to phase‐separate by self‐assembly into different morphologies through casting solvent selection, solvent evaporation, and thermal and solvent‐field regulation. Finally, perpendicularly oriented PS–PLA films were used as precursors for PS membranes with an ordered periodic nanoporous structure; this was achieved by the selective etching of the segregated PLA domains dispersed in a continuous matrix of PS. Testing techniques, including IR, 1H‐NMR, gel permeation chromatography, scanning electron microscopy (SEM), and atomic force microscopy (AFM), were used to determine the chemical structure of the PS–PLA copolymer and its film morphology. AFM images of the self‐assembled PS‐PLA films indicate that vertical tapers of the PLA domains were generated among PS continuum when either toluene or tetrahydrofuran was used as the annealing solvent. The SEM images certified that the chemical etching of the PLA component from the self‐assembled PS–PLA films led to a long‐range‐ordered array of hexagonally packed nanoporous membranes with a diameter about 500 nm and a center‐to‐center distance of 1700 nm. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 39638.</description><identifier>ISSN: 0021-8995</identifier><identifier>EISSN: 1097-4628</identifier><identifier>DOI: 10.1002/app.39638</identifier><identifier>CODEN: JAPNAB</identifier><language>eng</language><publisher>Hoboken, NJ: Blackwell Publishing Ltd</publisher><subject>Applied sciences ; Atomic force microscopy ; biodegradable ; Copolymers ; Exact sciences and technology ; Exchange resins and membranes ; Forms of application and semi-finished materials ; Materials science ; Membranes ; Nanocomposites ; Nanomaterials ; Nanostructure ; Polymer industry, paints, wood ; Polymers ; polystyrene ; Scanning electron microscopy ; self-assembly ; Solvents ; Technology of polymers</subject><ispartof>Journal of applied polymer science, 2014-01, Vol.131 (1), p.np-n/a</ispartof><rights>Copyright © 2013 Wiley Periodicals, Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4358-ffb348992d880d211bb42b1d168a4a956dce1ffbab542e9e23646b6b612b1b813</citedby><cites>FETCH-LOGICAL-c4358-ffb348992d880d211bb42b1d168a4a956dce1ffbab542e9e23646b6b612b1b813</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fapp.39638$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fapp.39638$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28235758$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lei, Lei</creatorcontrib><creatorcontrib>Xia, Yuzheng</creatorcontrib><creatorcontrib>Chen, Xiaonong</creatorcontrib><creatorcontrib>Shi, Shuxian</creatorcontrib><title>Long-range-ordered, hexagonally packed nanoporous membranes from degradable-block-containing diblock copolymer film templates</title><title>Journal of applied polymer science</title><addtitle>J. Appl. Polym. Sci</addtitle><description>ABSTRACT Polystyrene (PS)‐b‐polylactide (PLA) diblock copolymers with different molecular weights and fractions were synthesized through a combination of living anionic polymerization and controlled ring‐opening polymerization. Then, the PS–PLA films were guided to phase‐separate by self‐assembly into different morphologies through casting solvent selection, solvent evaporation, and thermal and solvent‐field regulation. Finally, perpendicularly oriented PS–PLA films were used as precursors for PS membranes with an ordered periodic nanoporous structure; this was achieved by the selective etching of the segregated PLA domains dispersed in a continuous matrix of PS. Testing techniques, including IR, 1H‐NMR, gel permeation chromatography, scanning electron microscopy (SEM), and atomic force microscopy (AFM), were used to determine the chemical structure of the PS–PLA copolymer and its film morphology. AFM images of the self‐assembled PS‐PLA films indicate that vertical tapers of the PLA domains were generated among PS continuum when either toluene or tetrahydrofuran was used as the annealing solvent. The SEM images certified that the chemical etching of the PLA component from the self‐assembled PS–PLA films led to a long‐range‐ordered array of hexagonally packed nanoporous membranes with a diameter about 500 nm and a center‐to‐center distance of 1700 nm. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 39638.</description><subject>Applied sciences</subject><subject>Atomic force microscopy</subject><subject>biodegradable</subject><subject>Copolymers</subject><subject>Exact sciences and technology</subject><subject>Exchange resins and membranes</subject><subject>Forms of application and semi-finished materials</subject><subject>Materials science</subject><subject>Membranes</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Polymer industry, paints, wood</subject><subject>Polymers</subject><subject>polystyrene</subject><subject>Scanning electron microscopy</subject><subject>self-assembly</subject><subject>Solvents</subject><subject>Technology of polymers</subject><issn>0021-8995</issn><issn>1097-4628</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp1kV1rFDEUhgdRcK1e-A8CIiiYdvI5mctS2iosWhbFy5CPM-N0M5MxmcXuhf_dbLf2QpBzETh53pdzzltVr0l9Suqanpl5PmWtZOpJtSJ122AuqXparcofwaptxfPqRc63dU2IqOWq-r2OU4-TmXrAMXlI4D-gH3Bn-jiZEPZoNm4LHk1minNMcZfRCKMtAsioS3FEHvpkvLEBsA3RbbGL02KGaZh65If7FnJFG_YjJNQNYUQLjHMwC-SX1bPOhAyvHt6T6tvV5deLj3j95frTxfkaO86Ewl1nGS_DU69U7Skh1nJqiSdSGW5aIb0DUiBjBafQAmWSS1uKFMoqwk6qd0ffOcWfO8iLHofsIISyRllJEy654FJSWdA3_6C3cZfKLQ4UJ1Iw3tSFen-kXIo5J-j0nIbRpL0mtT4EoUsQ-j6Iwr59cDTZmdCV27khPwqookw04sCdHblfQ4D9_w31-c3NX2d8VAx5gbtHhUlbLRvWCP3987VWZLPZEHmlFfsD-J2n9Q</recordid><startdate>20140105</startdate><enddate>20140105</enddate><creator>Lei, Lei</creator><creator>Xia, Yuzheng</creator><creator>Chen, Xiaonong</creator><creator>Shi, Shuxian</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20140105</creationdate><title>Long-range-ordered, hexagonally packed nanoporous membranes from degradable-block-containing diblock copolymer film templates</title><author>Lei, Lei ; Xia, Yuzheng ; Chen, Xiaonong ; Shi, Shuxian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4358-ffb348992d880d211bb42b1d168a4a956dce1ffbab542e9e23646b6b612b1b813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Atomic force microscopy</topic><topic>biodegradable</topic><topic>Copolymers</topic><topic>Exact sciences and technology</topic><topic>Exchange resins and membranes</topic><topic>Forms of application and semi-finished materials</topic><topic>Materials science</topic><topic>Membranes</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Polymer industry, paints, wood</topic><topic>Polymers</topic><topic>polystyrene</topic><topic>Scanning electron microscopy</topic><topic>self-assembly</topic><topic>Solvents</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lei, Lei</creatorcontrib><creatorcontrib>Xia, Yuzheng</creatorcontrib><creatorcontrib>Chen, Xiaonong</creatorcontrib><creatorcontrib>Shi, Shuxian</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of applied polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lei, Lei</au><au>Xia, Yuzheng</au><au>Chen, Xiaonong</au><au>Shi, Shuxian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-range-ordered, hexagonally packed nanoporous membranes from degradable-block-containing diblock copolymer film templates</atitle><jtitle>Journal of applied polymer science</jtitle><addtitle>J. Appl. Polym. Sci</addtitle><date>2014-01-05</date><risdate>2014</risdate><volume>131</volume><issue>1</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>0021-8995</issn><eissn>1097-4628</eissn><coden>JAPNAB</coden><abstract>ABSTRACT Polystyrene (PS)‐b‐polylactide (PLA) diblock copolymers with different molecular weights and fractions were synthesized through a combination of living anionic polymerization and controlled ring‐opening polymerization. Then, the PS–PLA films were guided to phase‐separate by self‐assembly into different morphologies through casting solvent selection, solvent evaporation, and thermal and solvent‐field regulation. Finally, perpendicularly oriented PS–PLA films were used as precursors for PS membranes with an ordered periodic nanoporous structure; this was achieved by the selective etching of the segregated PLA domains dispersed in a continuous matrix of PS. Testing techniques, including IR, 1H‐NMR, gel permeation chromatography, scanning electron microscopy (SEM), and atomic force microscopy (AFM), were used to determine the chemical structure of the PS–PLA copolymer and its film morphology. AFM images of the self‐assembled PS‐PLA films indicate that vertical tapers of the PLA domains were generated among PS continuum when either toluene or tetrahydrofuran was used as the annealing solvent. The SEM images certified that the chemical etching of the PLA component from the self‐assembled PS–PLA films led to a long‐range‐ordered array of hexagonally packed nanoporous membranes with a diameter about 500 nm and a center‐to‐center distance of 1700 nm. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 39638.</abstract><cop>Hoboken, NJ</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/app.39638</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-8995
ispartof Journal of applied polymer science, 2014-01, Vol.131 (1), p.np-n/a
issn 0021-8995
1097-4628
language eng
recordid cdi_proquest_miscellaneous_1464546626
source Access via Wiley Online Library
subjects Applied sciences
Atomic force microscopy
biodegradable
Copolymers
Exact sciences and technology
Exchange resins and membranes
Forms of application and semi-finished materials
Materials science
Membranes
Nanocomposites
Nanomaterials
Nanostructure
Polymer industry, paints, wood
Polymers
polystyrene
Scanning electron microscopy
self-assembly
Solvents
Technology of polymers
title Long-range-ordered, hexagonally packed nanoporous membranes from degradable-block-containing diblock copolymer film templates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A30%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-range-ordered,%20hexagonally%20packed%20nanoporous%20membranes%20from%20degradable-block-containing%20diblock%20copolymer%20film%20templates&rft.jtitle=Journal%20of%20applied%20polymer%20science&rft.au=Lei,%20Lei&rft.date=2014-01-05&rft.volume=131&rft.issue=1&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=0021-8995&rft.eissn=1097-4628&rft.coden=JAPNAB&rft_id=info:doi/10.1002/app.39638&rft_dat=%3Cproquest_cross%3E3097619991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1441653470&rft_id=info:pmid/&rfr_iscdi=true