SACK: Anonymization of Social Networks by Clustering of K-edge-connected Subgraphs

In this paper, a method for anonymization of social networks by clustering of k-edge-connected subgraphs (SACK) is presented. Previous anonymization algorithms do not consider distribution of nodes in social network graph according to their attributes. SACk tries to focus on probability of existence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer applications 2013-01, Vol.77 (8), p.5-11
Hauptverfasser: Soureshjani, Fatemeh Heidari, Delavar, Arash Ghorbannia, Rashidi, Fatemeh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 8
container_start_page 5
container_title International journal of computer applications
container_volume 77
creator Soureshjani, Fatemeh Heidari
Delavar, Arash Ghorbannia
Rashidi, Fatemeh
description In this paper, a method for anonymization of social networks by clustering of k-edge-connected subgraphs (SACK) is presented. Previous anonymization algorithms do not consider distribution of nodes in social network graph according to their attributes. SACk tries to focus on probability of existence of an edge between two nodes is related to their attributes and this leads to a graph with connected subgraphs. Using connected subgraphs in anonymization process this method obtains better experimental results both in data quality and time. In other word, Sequential clustering is mostly used for anonymization and using k-edge connected subgraphs for starting step. Sequential clustering is a greedy algorithm and results are dependent on starting point.
doi_str_mv 10.5120/13412-1067
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1464546277</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1464546277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1327-b0b3dfdd4694798976debf51f8536da9adfb07a99fcf6c2713aa75b5222194d53</originalsourceid><addsrcrecordid>eNpd0MtKw0AUBuBBFCy1G58g4EaE6Nwn464Eb7QoWF2HyVxqajpTZxKkPr2pdSGezTmLj8PPD8ApgpcMYXiFCEU4R5CLAzCCUrC8KApx-Oc-BpOUVnAYIjGXdASeF9Nydp1NffDbdfOluib4LLhsEXSj2uzRdp8hvqes3mZl26fOxsYvd2CWW7O0uQ7eW91Zky36ehnV5i2dgCOn2mQnv3sMXm9vXsr7fP5091BO57lGBIu8hjUxzhg65BCykIIbWzuGXMEIN0oq42oolJROO66xQEQpwWqGMUaSGkbG4Hz_dxPDR29TV62bpG3bKm9DnypEOWWUYyEGevaPrkIf_ZBuUBQVEjLEB3WxVzqGlKJ11SY2axW3FYLVruHqp-Fq1zD5BsPea5k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1441890516</pqid></control><display><type>article</type><title>SACK: Anonymization of Social Networks by Clustering of K-edge-connected Subgraphs</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Soureshjani, Fatemeh Heidari ; Delavar, Arash Ghorbannia ; Rashidi, Fatemeh</creator><creatorcontrib>Soureshjani, Fatemeh Heidari ; Delavar, Arash Ghorbannia ; Rashidi, Fatemeh</creatorcontrib><description>In this paper, a method for anonymization of social networks by clustering of k-edge-connected subgraphs (SACK) is presented. Previous anonymization algorithms do not consider distribution of nodes in social network graph according to their attributes. SACk tries to focus on probability of existence of an edge between two nodes is related to their attributes and this leads to a graph with connected subgraphs. Using connected subgraphs in anonymization process this method obtains better experimental results both in data quality and time. In other word, Sequential clustering is mostly used for anonymization and using k-edge connected subgraphs for starting step. Sequential clustering is a greedy algorithm and results are dependent on starting point.</description><identifier>ISSN: 0975-8887</identifier><identifier>EISSN: 0975-8887</identifier><identifier>DOI: 10.5120/13412-1067</identifier><language>eng</language><publisher>New York: Foundation of Computer Science</publisher><subject>Algorithms ; Clustering ; Graphs ; Greedy algorithms ; Sacks ; Social networks</subject><ispartof>International journal of computer applications, 2013-01, Vol.77 (8), p.5-11</ispartof><rights>Copyright Foundation of Computer Science 2013</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>Soureshjani, Fatemeh Heidari</creatorcontrib><creatorcontrib>Delavar, Arash Ghorbannia</creatorcontrib><creatorcontrib>Rashidi, Fatemeh</creatorcontrib><title>SACK: Anonymization of Social Networks by Clustering of K-edge-connected Subgraphs</title><title>International journal of computer applications</title><description>In this paper, a method for anonymization of social networks by clustering of k-edge-connected subgraphs (SACK) is presented. Previous anonymization algorithms do not consider distribution of nodes in social network graph according to their attributes. SACk tries to focus on probability of existence of an edge between two nodes is related to their attributes and this leads to a graph with connected subgraphs. Using connected subgraphs in anonymization process this method obtains better experimental results both in data quality and time. In other word, Sequential clustering is mostly used for anonymization and using k-edge connected subgraphs for starting step. Sequential clustering is a greedy algorithm and results are dependent on starting point.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Graphs</subject><subject>Greedy algorithms</subject><subject>Sacks</subject><subject>Social networks</subject><issn>0975-8887</issn><issn>0975-8887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpd0MtKw0AUBuBBFCy1G58g4EaE6Nwn464Eb7QoWF2HyVxqajpTZxKkPr2pdSGezTmLj8PPD8ApgpcMYXiFCEU4R5CLAzCCUrC8KApx-Oc-BpOUVnAYIjGXdASeF9Nydp1NffDbdfOluib4LLhsEXSj2uzRdp8hvqes3mZl26fOxsYvd2CWW7O0uQ7eW91Zky36ehnV5i2dgCOn2mQnv3sMXm9vXsr7fP5091BO57lGBIu8hjUxzhg65BCykIIbWzuGXMEIN0oq42oolJROO66xQEQpwWqGMUaSGkbG4Hz_dxPDR29TV62bpG3bKm9DnypEOWWUYyEGevaPrkIf_ZBuUBQVEjLEB3WxVzqGlKJ11SY2axW3FYLVruHqp-Fq1zD5BsPea5k</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Soureshjani, Fatemeh Heidari</creator><creator>Delavar, Arash Ghorbannia</creator><creator>Rashidi, Fatemeh</creator><general>Foundation of Computer Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20130101</creationdate><title>SACK: Anonymization of Social Networks by Clustering of K-edge-connected Subgraphs</title><author>Soureshjani, Fatemeh Heidari ; Delavar, Arash Ghorbannia ; Rashidi, Fatemeh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1327-b0b3dfdd4694798976debf51f8536da9adfb07a99fcf6c2713aa75b5222194d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Graphs</topic><topic>Greedy algorithms</topic><topic>Sacks</topic><topic>Social networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Soureshjani, Fatemeh Heidari</creatorcontrib><creatorcontrib>Delavar, Arash Ghorbannia</creatorcontrib><creatorcontrib>Rashidi, Fatemeh</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of computer applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Soureshjani, Fatemeh Heidari</au><au>Delavar, Arash Ghorbannia</au><au>Rashidi, Fatemeh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SACK: Anonymization of Social Networks by Clustering of K-edge-connected Subgraphs</atitle><jtitle>International journal of computer applications</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>77</volume><issue>8</issue><spage>5</spage><epage>11</epage><pages>5-11</pages><issn>0975-8887</issn><eissn>0975-8887</eissn><abstract>In this paper, a method for anonymization of social networks by clustering of k-edge-connected subgraphs (SACK) is presented. Previous anonymization algorithms do not consider distribution of nodes in social network graph according to their attributes. SACk tries to focus on probability of existence of an edge between two nodes is related to their attributes and this leads to a graph with connected subgraphs. Using connected subgraphs in anonymization process this method obtains better experimental results both in data quality and time. In other word, Sequential clustering is mostly used for anonymization and using k-edge connected subgraphs for starting step. Sequential clustering is a greedy algorithm and results are dependent on starting point.</abstract><cop>New York</cop><pub>Foundation of Computer Science</pub><doi>10.5120/13412-1067</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0975-8887
ispartof International journal of computer applications, 2013-01, Vol.77 (8), p.5-11
issn 0975-8887
0975-8887
language eng
recordid cdi_proquest_miscellaneous_1464546277
source EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Clustering
Graphs
Greedy algorithms
Sacks
Social networks
title SACK: Anonymization of Social Networks by Clustering of K-edge-connected Subgraphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T03%3A27%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SACK:%20Anonymization%20of%20Social%20Networks%20by%20Clustering%20of%20K-edge-connected%20Subgraphs&rft.jtitle=International%20journal%20of%20computer%20applications&rft.au=Soureshjani,%20Fatemeh%20Heidari&rft.date=2013-01-01&rft.volume=77&rft.issue=8&rft.spage=5&rft.epage=11&rft.pages=5-11&rft.issn=0975-8887&rft.eissn=0975-8887&rft_id=info:doi/10.5120/13412-1067&rft_dat=%3Cproquest_cross%3E1464546277%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1441890516&rft_id=info:pmid/&rfr_iscdi=true