Semi-computational simulation of magneto-hemodynamic flow in a semi-porous channel using optimal homotopy and differential transform methods
Abstract In this paper, the semi-numerical techniques known as the optimal homotopy analysis method (HAM) and Differential Transform Method (DTM) are applied to study the magneto-hemodynamic laminar viscous flow of a conducting physiological fluid in a semi-porous channel under a transverse magnetic...
Gespeichert in:
Veröffentlicht in: | Computers in biology and medicine 2013-09, Vol.43 (9), p.1142-1153 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1153 |
---|---|
container_issue | 9 |
container_start_page | 1142 |
container_title | Computers in biology and medicine |
container_volume | 43 |
creator | Basiri Parsa, A Rashidi, M.M Anwar Bég, O Sadri, S.M |
description | Abstract In this paper, the semi-numerical techniques known as the optimal homotopy analysis method (HAM) and Differential Transform Method (DTM) are applied to study the magneto-hemodynamic laminar viscous flow of a conducting physiological fluid in a semi-porous channel under a transverse magnetic field. The two-dimensional momentum conservation partial differential equations are reduced to ordinary form incorporating Lorentizian magnetohydrodynamic body force terms. These ordinary differential equations are solved by the homotopy analysis method, the differential transform method and also a numerical method (fourth-order Runge–Kutta quadrature with a shooting method), under physically realistic boundary conditions. The homotopy analysis method contains the auxiliary parameter ℏ , which provides us with a simple way to adjust and control the convergence region of solution series. The differential transform method (DTM) does not require an auxiliary parameter and is employed to compute an approximation to the solution of the system of nonlinear differential equations governing the problem. The influence of Hartmann number ( Ha ) and transpiration Reynolds number (mass transfer parameter, Re ) on the velocity profiles in the channel are studied in detail. Interesting fluid dynamic characteristics are revealed and addressed. The HAM and DTM solutions are shown to both correlate well with numerical quadrature solutions, testifying to the accuracy of both HAM and DTM in nonlinear magneto-hemodynamics problems. Both these semi-numerical techniques hold excellent potential in modeling nonlinear viscous flows in biological systems. |
doi_str_mv | 10.1016/j.compbiomed.2013.05.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1464515604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0010482513001352</els_id><sourcerecordid>1464515604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-e8128da0a54f9ce4b97cde2bf05a5e7bad81aabe4bf0e74ae625b93dc7ba6d883</originalsourceid><addsrcrecordid>eNqNUk1v1DAQjRCILoW_gCxx4ZJlHMdZ54IEFV9SJQ6Fs-XYk66X2A62A9r_wI_G6baq1FNPHuu9eaN5b6qKUNhSoN27w1YHNw82ODTbBijbAt8C7Z9UGyp2fQ2ctU-rDQCFuhUNP6tepHQAgBYYPK_OGtYzELDbVP-u0Nl6VVuyyjZ4NZFk3TLdfEgYiVPXHnOo9-iCOXrlrCbjFP4S64kiaW2fQwxLInqvvMeJLMn6axLmbF1R2wcXcpiPRHlDjB1HjOizLUiOyqcxREcc5n0w6WX1bFRTwle373n18_OnHxdf68vvX75dfLisddtDrlHQRhgFirdjr7Ed-p022AwjcMVxNygjqFJDAUbAXauwa_jQM6ML1Bkh2Hn19qQ7x_B7wZSls0njNCmPZRFJ267llHfQPoJa7Oddx1fVNw-oh7DEYujKoqJrBaN9YYkTS8eQUsRRzrH4FI-SglzDlQd5H65cw5XAJdy0vr4dsAwrdtd4l2YhfDwRsJj3x2KUSVv0Go2NqLM0wT5myvsHInqy3mo1_cIjpvudZGokyKv1yNYbo6xUjDfsP7QX06w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1418648319</pqid></control><display><type>article</type><title>Semi-computational simulation of magneto-hemodynamic flow in a semi-porous channel using optimal homotopy and differential transform methods</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><source>ProQuest Central UK/Ireland</source><creator>Basiri Parsa, A ; Rashidi, M.M ; Anwar Bég, O ; Sadri, S.M</creator><creatorcontrib>Basiri Parsa, A ; Rashidi, M.M ; Anwar Bég, O ; Sadri, S.M</creatorcontrib><description>Abstract In this paper, the semi-numerical techniques known as the optimal homotopy analysis method (HAM) and Differential Transform Method (DTM) are applied to study the magneto-hemodynamic laminar viscous flow of a conducting physiological fluid in a semi-porous channel under a transverse magnetic field. The two-dimensional momentum conservation partial differential equations are reduced to ordinary form incorporating Lorentizian magnetohydrodynamic body force terms. These ordinary differential equations are solved by the homotopy analysis method, the differential transform method and also a numerical method (fourth-order Runge–Kutta quadrature with a shooting method), under physically realistic boundary conditions. The homotopy analysis method contains the auxiliary parameter ℏ , which provides us with a simple way to adjust and control the convergence region of solution series. The differential transform method (DTM) does not require an auxiliary parameter and is employed to compute an approximation to the solution of the system of nonlinear differential equations governing the problem. The influence of Hartmann number ( Ha ) and transpiration Reynolds number (mass transfer parameter, Re ) on the velocity profiles in the channel are studied in detail. Interesting fluid dynamic characteristics are revealed and addressed. The HAM and DTM solutions are shown to both correlate well with numerical quadrature solutions, testifying to the accuracy of both HAM and DTM in nonlinear magneto-hemodynamics problems. Both these semi-numerical techniques hold excellent potential in modeling nonlinear viscous flows in biological systems.</description><identifier>ISSN: 0010-4825</identifier><identifier>EISSN: 1879-0534</identifier><identifier>DOI: 10.1016/j.compbiomed.2013.05.019</identifier><identifier>PMID: 23930807</identifier><identifier>CODEN: CBMDAW</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Blood flow control ; Blood Flow Velocity ; Blood Viscosity ; Boundaries ; Computer Simulation ; Differential transform method (DTM) ; Hartmann number ; Heat transfer ; Homotopy analysis method (HAM) ; Humans ; Internal Medicine ; Laminar viscous flow ; Magnetic Fields ; Magneto-hemodynamics ; Methods ; Models, Cardiovascular ; Nonlinear differential equations ; Numerical analysis ; Other ; Porosity ; Semi-porous channel ; Studies ; Wall transpiration</subject><ispartof>Computers in biology and medicine, 2013-09, Vol.43 (9), p.1142-1153</ispartof><rights>Elsevier Ltd</rights><rights>2013 Elsevier Ltd</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited Sep 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-e8128da0a54f9ce4b97cde2bf05a5e7bad81aabe4bf0e74ae625b93dc7ba6d883</citedby><cites>FETCH-LOGICAL-c490t-e8128da0a54f9ce4b97cde2bf05a5e7bad81aabe4bf0e74ae625b93dc7ba6d883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1418648319?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000,64390,64392,64394,72474</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23930807$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Basiri Parsa, A</creatorcontrib><creatorcontrib>Rashidi, M.M</creatorcontrib><creatorcontrib>Anwar Bég, O</creatorcontrib><creatorcontrib>Sadri, S.M</creatorcontrib><title>Semi-computational simulation of magneto-hemodynamic flow in a semi-porous channel using optimal homotopy and differential transform methods</title><title>Computers in biology and medicine</title><addtitle>Comput Biol Med</addtitle><description>Abstract In this paper, the semi-numerical techniques known as the optimal homotopy analysis method (HAM) and Differential Transform Method (DTM) are applied to study the magneto-hemodynamic laminar viscous flow of a conducting physiological fluid in a semi-porous channel under a transverse magnetic field. The two-dimensional momentum conservation partial differential equations are reduced to ordinary form incorporating Lorentizian magnetohydrodynamic body force terms. These ordinary differential equations are solved by the homotopy analysis method, the differential transform method and also a numerical method (fourth-order Runge–Kutta quadrature with a shooting method), under physically realistic boundary conditions. The homotopy analysis method contains the auxiliary parameter ℏ , which provides us with a simple way to adjust and control the convergence region of solution series. The differential transform method (DTM) does not require an auxiliary parameter and is employed to compute an approximation to the solution of the system of nonlinear differential equations governing the problem. The influence of Hartmann number ( Ha ) and transpiration Reynolds number (mass transfer parameter, Re ) on the velocity profiles in the channel are studied in detail. Interesting fluid dynamic characteristics are revealed and addressed. The HAM and DTM solutions are shown to both correlate well with numerical quadrature solutions, testifying to the accuracy of both HAM and DTM in nonlinear magneto-hemodynamics problems. Both these semi-numerical techniques hold excellent potential in modeling nonlinear viscous flows in biological systems.</description><subject>Blood flow control</subject><subject>Blood Flow Velocity</subject><subject>Blood Viscosity</subject><subject>Boundaries</subject><subject>Computer Simulation</subject><subject>Differential transform method (DTM)</subject><subject>Hartmann number</subject><subject>Heat transfer</subject><subject>Homotopy analysis method (HAM)</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Laminar viscous flow</subject><subject>Magnetic Fields</subject><subject>Magneto-hemodynamics</subject><subject>Methods</subject><subject>Models, Cardiovascular</subject><subject>Nonlinear differential equations</subject><subject>Numerical analysis</subject><subject>Other</subject><subject>Porosity</subject><subject>Semi-porous channel</subject><subject>Studies</subject><subject>Wall transpiration</subject><issn>0010-4825</issn><issn>1879-0534</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNUk1v1DAQjRCILoW_gCxx4ZJlHMdZ54IEFV9SJQ6Fs-XYk66X2A62A9r_wI_G6baq1FNPHuu9eaN5b6qKUNhSoN27w1YHNw82ODTbBijbAt8C7Z9UGyp2fQ2ctU-rDQCFuhUNP6tepHQAgBYYPK_OGtYzELDbVP-u0Nl6VVuyyjZ4NZFk3TLdfEgYiVPXHnOo9-iCOXrlrCbjFP4S64kiaW2fQwxLInqvvMeJLMn6axLmbF1R2wcXcpiPRHlDjB1HjOizLUiOyqcxREcc5n0w6WX1bFRTwle373n18_OnHxdf68vvX75dfLisddtDrlHQRhgFirdjr7Ed-p022AwjcMVxNygjqFJDAUbAXauwa_jQM6ML1Bkh2Hn19qQ7x_B7wZSls0njNCmPZRFJ267llHfQPoJa7Oddx1fVNw-oh7DEYujKoqJrBaN9YYkTS8eQUsRRzrH4FI-SglzDlQd5H65cw5XAJdy0vr4dsAwrdtd4l2YhfDwRsJj3x2KUSVv0Go2NqLM0wT5myvsHInqy3mo1_cIjpvudZGokyKv1yNYbo6xUjDfsP7QX06w</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Basiri Parsa, A</creator><creator>Rashidi, M.M</creator><creator>Anwar Bég, O</creator><creator>Sadri, S.M</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>M7Z</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20130901</creationdate><title>Semi-computational simulation of magneto-hemodynamic flow in a semi-porous channel using optimal homotopy and differential transform methods</title><author>Basiri Parsa, A ; Rashidi, M.M ; Anwar Bég, O ; Sadri, S.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-e8128da0a54f9ce4b97cde2bf05a5e7bad81aabe4bf0e74ae625b93dc7ba6d883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Blood flow control</topic><topic>Blood Flow Velocity</topic><topic>Blood Viscosity</topic><topic>Boundaries</topic><topic>Computer Simulation</topic><topic>Differential transform method (DTM)</topic><topic>Hartmann number</topic><topic>Heat transfer</topic><topic>Homotopy analysis method (HAM)</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Laminar viscous flow</topic><topic>Magnetic Fields</topic><topic>Magneto-hemodynamics</topic><topic>Methods</topic><topic>Models, Cardiovascular</topic><topic>Nonlinear differential equations</topic><topic>Numerical analysis</topic><topic>Other</topic><topic>Porosity</topic><topic>Semi-porous channel</topic><topic>Studies</topic><topic>Wall transpiration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basiri Parsa, A</creatorcontrib><creatorcontrib>Rashidi, M.M</creatorcontrib><creatorcontrib>Anwar Bég, O</creatorcontrib><creatorcontrib>Sadri, S.M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing & Allied Health Database</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Computers in biology and medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basiri Parsa, A</au><au>Rashidi, M.M</au><au>Anwar Bég, O</au><au>Sadri, S.M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semi-computational simulation of magneto-hemodynamic flow in a semi-porous channel using optimal homotopy and differential transform methods</atitle><jtitle>Computers in biology and medicine</jtitle><addtitle>Comput Biol Med</addtitle><date>2013-09-01</date><risdate>2013</risdate><volume>43</volume><issue>9</issue><spage>1142</spage><epage>1153</epage><pages>1142-1153</pages><issn>0010-4825</issn><eissn>1879-0534</eissn><coden>CBMDAW</coden><abstract>Abstract In this paper, the semi-numerical techniques known as the optimal homotopy analysis method (HAM) and Differential Transform Method (DTM) are applied to study the magneto-hemodynamic laminar viscous flow of a conducting physiological fluid in a semi-porous channel under a transverse magnetic field. The two-dimensional momentum conservation partial differential equations are reduced to ordinary form incorporating Lorentizian magnetohydrodynamic body force terms. These ordinary differential equations are solved by the homotopy analysis method, the differential transform method and also a numerical method (fourth-order Runge–Kutta quadrature with a shooting method), under physically realistic boundary conditions. The homotopy analysis method contains the auxiliary parameter ℏ , which provides us with a simple way to adjust and control the convergence region of solution series. The differential transform method (DTM) does not require an auxiliary parameter and is employed to compute an approximation to the solution of the system of nonlinear differential equations governing the problem. The influence of Hartmann number ( Ha ) and transpiration Reynolds number (mass transfer parameter, Re ) on the velocity profiles in the channel are studied in detail. Interesting fluid dynamic characteristics are revealed and addressed. The HAM and DTM solutions are shown to both correlate well with numerical quadrature solutions, testifying to the accuracy of both HAM and DTM in nonlinear magneto-hemodynamics problems. Both these semi-numerical techniques hold excellent potential in modeling nonlinear viscous flows in biological systems.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>23930807</pmid><doi>10.1016/j.compbiomed.2013.05.019</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4825 |
ispartof | Computers in biology and medicine, 2013-09, Vol.43 (9), p.1142-1153 |
issn | 0010-4825 1879-0534 |
language | eng |
recordid | cdi_proquest_miscellaneous_1464515604 |
source | MEDLINE; Access via ScienceDirect (Elsevier); ProQuest Central UK/Ireland |
subjects | Blood flow control Blood Flow Velocity Blood Viscosity Boundaries Computer Simulation Differential transform method (DTM) Hartmann number Heat transfer Homotopy analysis method (HAM) Humans Internal Medicine Laminar viscous flow Magnetic Fields Magneto-hemodynamics Methods Models, Cardiovascular Nonlinear differential equations Numerical analysis Other Porosity Semi-porous channel Studies Wall transpiration |
title | Semi-computational simulation of magneto-hemodynamic flow in a semi-porous channel using optimal homotopy and differential transform methods |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T01%3A56%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semi-computational%20simulation%20of%20magneto-hemodynamic%20flow%20in%20a%20semi-porous%20channel%20using%20optimal%20homotopy%20and%20differential%20transform%20methods&rft.jtitle=Computers%20in%20biology%20and%20medicine&rft.au=Basiri%20Parsa,%20A&rft.date=2013-09-01&rft.volume=43&rft.issue=9&rft.spage=1142&rft.epage=1153&rft.pages=1142-1153&rft.issn=0010-4825&rft.eissn=1879-0534&rft.coden=CBMDAW&rft_id=info:doi/10.1016/j.compbiomed.2013.05.019&rft_dat=%3Cproquest_cross%3E1464515604%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1418648319&rft_id=info:pmid/23930807&rft_els_id=S0010482513001352&rfr_iscdi=true |