Role of connexin 32 hemichannels in the release of ATP from peripheral nerves

Extracellular purines elicit strong signals in the nervous system. Adenosine‐5′‐triphosphate (ATP) does not spontaneously cross the plasma membrane, and nervous cells secrete ATP by exocytosis or through plasma membrane proteins such as connexin hemichannels. Using a combination of imaging, luminesc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glia 2013-12, Vol.61 (12), p.1976-1989
Hauptverfasser: Nualart-Marti, Anna, del Molino, Ezequiel Mas, Grandes, Xènia, Bahima, Laia, Martin-Satué, Mireia, Puchal, Rafel, Fasciani, Ilaria, González-Nieto, Daniel, Ziganshin, Bulat, Llobet, Artur, Barrio, Luis C., Solsona, Carles
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1989
container_issue 12
container_start_page 1976
container_title Glia
container_volume 61
creator Nualart-Marti, Anna
del Molino, Ezequiel Mas
Grandes, Xènia
Bahima, Laia
Martin-Satué, Mireia
Puchal, Rafel
Fasciani, Ilaria
González-Nieto, Daniel
Ziganshin, Bulat
Llobet, Artur
Barrio, Luis C.
Solsona, Carles
description Extracellular purines elicit strong signals in the nervous system. Adenosine‐5′‐triphosphate (ATP) does not spontaneously cross the plasma membrane, and nervous cells secrete ATP by exocytosis or through plasma membrane proteins such as connexin hemichannels. Using a combination of imaging, luminescence and electrophysiological techniques, we explored the possibility that Connexin 32 (Cx32), expressed in Schwann cells (SCs) myelinating the peripheral nervous system could be an important source of ATP in peripheral nerves. We triggered the release of ATP in vivo from mice sciatic nerves by electrical stimulation and from cultured SCs by high extracellular potassium concentration‐evoked depolarization. No ATP was detected in the extracellular media after treatment of the sciatic nerve with Octanol or Carbenoxolone, and ATP release was significantly inhibited after silencing Cx32 from SCs cultures. We investigated the permeability of Cx32 to ATP by expressing Cx32 hemichannels in Xenopus laevis oocytes. We found that ATP release is coupled to the inward tail current generated after the activation of Cx32 hemichannels by depolarization pulses, and it is sensitive to low extracellular calcium concentrations. Moreover, we found altered ATP release in mutated Cx32 hemichannels related to the X‐linked form of Charcot‐Marie‐Tooth disease, suggesting that purinergic‐mediated signaling in peripheral nerves could underlie the physiopathology of this neuropathy. GLIA 2013;61:1976–1989
doi_str_mv 10.1002/glia.22568
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1464511456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1464511456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4598-960ad19b7d48bf773bc6ea9d6269106597b607d09f22ccee4581a91eb671aba23</originalsourceid><addsrcrecordid>eNqNkU1PGzEQhq0KBIFy6Q9AlrhwWfB4_bE-RlDSSCmNEFWPlnd3liz17qZ2wse_r5NQDj1xsj1-3lcz8xLyBdgFMMYvH3zrLjiXqvhERsBMkQHkao-MWGFEBsLAITmK8ZExSA99QA65AJ4LkCPy_W7wSIeGVkPf40vb05zTBXZttXCp4CNNpdUCaUCPLm7R8f2cNmHo6BJDu1xgcJ72GJ4wfib7jfMRT97OY_Lz5uv91bds9mMyvRrPskrI1J5RzNVgSl2Lomy0zstKoTO14soAU9LoUjFdM9NwXlWIQhbgDGCpNLjS8fyYnO98l2H4s8a4sl0bK_Te9TisowWhhEzDSvUBVGhgmhUioWf_oY_DOvRpkA0lhdJGbQxP36h12WFtl6HtXHi1_3aaANgBz63H1_d_YHaTlt2kZbdp2clsOt7ekibbadq4wpd3jQu_rdK5lvbX7cTe5cX15Hp-Y4v8L8TFk2o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1445467966</pqid></control><display><type>article</type><title>Role of connexin 32 hemichannels in the release of ATP from peripheral nerves</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Nualart-Marti, Anna ; del Molino, Ezequiel Mas ; Grandes, Xènia ; Bahima, Laia ; Martin-Satué, Mireia ; Puchal, Rafel ; Fasciani, Ilaria ; González-Nieto, Daniel ; Ziganshin, Bulat ; Llobet, Artur ; Barrio, Luis C. ; Solsona, Carles</creator><creatorcontrib>Nualart-Marti, Anna ; del Molino, Ezequiel Mas ; Grandes, Xènia ; Bahima, Laia ; Martin-Satué, Mireia ; Puchal, Rafel ; Fasciani, Ilaria ; González-Nieto, Daniel ; Ziganshin, Bulat ; Llobet, Artur ; Barrio, Luis C. ; Solsona, Carles</creatorcontrib><description>Extracellular purines elicit strong signals in the nervous system. Adenosine‐5′‐triphosphate (ATP) does not spontaneously cross the plasma membrane, and nervous cells secrete ATP by exocytosis or through plasma membrane proteins such as connexin hemichannels. Using a combination of imaging, luminescence and electrophysiological techniques, we explored the possibility that Connexin 32 (Cx32), expressed in Schwann cells (SCs) myelinating the peripheral nervous system could be an important source of ATP in peripheral nerves. We triggered the release of ATP in vivo from mice sciatic nerves by electrical stimulation and from cultured SCs by high extracellular potassium concentration‐evoked depolarization. No ATP was detected in the extracellular media after treatment of the sciatic nerve with Octanol or Carbenoxolone, and ATP release was significantly inhibited after silencing Cx32 from SCs cultures. We investigated the permeability of Cx32 to ATP by expressing Cx32 hemichannels in Xenopus laevis oocytes. We found that ATP release is coupled to the inward tail current generated after the activation of Cx32 hemichannels by depolarization pulses, and it is sensitive to low extracellular calcium concentrations. Moreover, we found altered ATP release in mutated Cx32 hemichannels related to the X‐linked form of Charcot‐Marie‐Tooth disease, suggesting that purinergic‐mediated signaling in peripheral nerves could underlie the physiopathology of this neuropathy. GLIA 2013;61:1976–1989</description><identifier>ISSN: 0894-1491</identifier><identifier>EISSN: 1098-1136</identifier><identifier>DOI: 10.1002/glia.22568</identifier><identifier>PMID: 24123415</identifier><identifier>CODEN: GLIAEJ</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Adenosine Triphosphate - metabolism ; Animals ; Calcium ; Carbenoxolone - pharmacology ; Connexins - genetics ; Connexins - metabolism ; Electric Stimulation ; gap junction ; Gap Junction beta-1 Protein ; Gap Junctions - drug effects ; Gap Junctions - genetics ; Gap Junctions - metabolism ; Male ; Mice ; Oocytes - drug effects ; Oocytes - metabolism ; purinergic ; Rodents ; Schwann cell ; Schwann Cells - drug effects ; Schwann Cells - metabolism ; Sciatic Nerve - drug effects ; Sciatic Nerve - metabolism ; X-linked Charcot-Marie-Tooth disease ; Xenopus laevis ; Xenopus oocytes</subject><ispartof>Glia, 2013-12, Vol.61 (12), p.1976-1989</ispartof><rights>Copyright © 2013 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4598-960ad19b7d48bf773bc6ea9d6269106597b607d09f22ccee4581a91eb671aba23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fglia.22568$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fglia.22568$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24123415$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nualart-Marti, Anna</creatorcontrib><creatorcontrib>del Molino, Ezequiel Mas</creatorcontrib><creatorcontrib>Grandes, Xènia</creatorcontrib><creatorcontrib>Bahima, Laia</creatorcontrib><creatorcontrib>Martin-Satué, Mireia</creatorcontrib><creatorcontrib>Puchal, Rafel</creatorcontrib><creatorcontrib>Fasciani, Ilaria</creatorcontrib><creatorcontrib>González-Nieto, Daniel</creatorcontrib><creatorcontrib>Ziganshin, Bulat</creatorcontrib><creatorcontrib>Llobet, Artur</creatorcontrib><creatorcontrib>Barrio, Luis C.</creatorcontrib><creatorcontrib>Solsona, Carles</creatorcontrib><title>Role of connexin 32 hemichannels in the release of ATP from peripheral nerves</title><title>Glia</title><addtitle>Glia</addtitle><description>Extracellular purines elicit strong signals in the nervous system. Adenosine‐5′‐triphosphate (ATP) does not spontaneously cross the plasma membrane, and nervous cells secrete ATP by exocytosis or through plasma membrane proteins such as connexin hemichannels. Using a combination of imaging, luminescence and electrophysiological techniques, we explored the possibility that Connexin 32 (Cx32), expressed in Schwann cells (SCs) myelinating the peripheral nervous system could be an important source of ATP in peripheral nerves. We triggered the release of ATP in vivo from mice sciatic nerves by electrical stimulation and from cultured SCs by high extracellular potassium concentration‐evoked depolarization. No ATP was detected in the extracellular media after treatment of the sciatic nerve with Octanol or Carbenoxolone, and ATP release was significantly inhibited after silencing Cx32 from SCs cultures. We investigated the permeability of Cx32 to ATP by expressing Cx32 hemichannels in Xenopus laevis oocytes. We found that ATP release is coupled to the inward tail current generated after the activation of Cx32 hemichannels by depolarization pulses, and it is sensitive to low extracellular calcium concentrations. Moreover, we found altered ATP release in mutated Cx32 hemichannels related to the X‐linked form of Charcot‐Marie‐Tooth disease, suggesting that purinergic‐mediated signaling in peripheral nerves could underlie the physiopathology of this neuropathy. GLIA 2013;61:1976–1989</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>Calcium</subject><subject>Carbenoxolone - pharmacology</subject><subject>Connexins - genetics</subject><subject>Connexins - metabolism</subject><subject>Electric Stimulation</subject><subject>gap junction</subject><subject>Gap Junction beta-1 Protein</subject><subject>Gap Junctions - drug effects</subject><subject>Gap Junctions - genetics</subject><subject>Gap Junctions - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Oocytes - drug effects</subject><subject>Oocytes - metabolism</subject><subject>purinergic</subject><subject>Rodents</subject><subject>Schwann cell</subject><subject>Schwann Cells - drug effects</subject><subject>Schwann Cells - metabolism</subject><subject>Sciatic Nerve - drug effects</subject><subject>Sciatic Nerve - metabolism</subject><subject>X-linked Charcot-Marie-Tooth disease</subject><subject>Xenopus laevis</subject><subject>Xenopus oocytes</subject><issn>0894-1491</issn><issn>1098-1136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1PGzEQhq0KBIFy6Q9AlrhwWfB4_bE-RlDSSCmNEFWPlnd3liz17qZ2wse_r5NQDj1xsj1-3lcz8xLyBdgFMMYvH3zrLjiXqvhERsBMkQHkao-MWGFEBsLAITmK8ZExSA99QA65AJ4LkCPy_W7wSIeGVkPf40vb05zTBXZttXCp4CNNpdUCaUCPLm7R8f2cNmHo6BJDu1xgcJ72GJ4wfib7jfMRT97OY_Lz5uv91bds9mMyvRrPskrI1J5RzNVgSl2Lomy0zstKoTO14soAU9LoUjFdM9NwXlWIQhbgDGCpNLjS8fyYnO98l2H4s8a4sl0bK_Te9TisowWhhEzDSvUBVGhgmhUioWf_oY_DOvRpkA0lhdJGbQxP36h12WFtl6HtXHi1_3aaANgBz63H1_d_YHaTlt2kZbdp2clsOt7ekibbadq4wpd3jQu_rdK5lvbX7cTe5cX15Hp-Y4v8L8TFk2o</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Nualart-Marti, Anna</creator><creator>del Molino, Ezequiel Mas</creator><creator>Grandes, Xènia</creator><creator>Bahima, Laia</creator><creator>Martin-Satué, Mireia</creator><creator>Puchal, Rafel</creator><creator>Fasciani, Ilaria</creator><creator>González-Nieto, Daniel</creator><creator>Ziganshin, Bulat</creator><creator>Llobet, Artur</creator><creator>Barrio, Luis C.</creator><creator>Solsona, Carles</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201312</creationdate><title>Role of connexin 32 hemichannels in the release of ATP from peripheral nerves</title><author>Nualart-Marti, Anna ; del Molino, Ezequiel Mas ; Grandes, Xènia ; Bahima, Laia ; Martin-Satué, Mireia ; Puchal, Rafel ; Fasciani, Ilaria ; González-Nieto, Daniel ; Ziganshin, Bulat ; Llobet, Artur ; Barrio, Luis C. ; Solsona, Carles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4598-960ad19b7d48bf773bc6ea9d6269106597b607d09f22ccee4581a91eb671aba23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>Calcium</topic><topic>Carbenoxolone - pharmacology</topic><topic>Connexins - genetics</topic><topic>Connexins - metabolism</topic><topic>Electric Stimulation</topic><topic>gap junction</topic><topic>Gap Junction beta-1 Protein</topic><topic>Gap Junctions - drug effects</topic><topic>Gap Junctions - genetics</topic><topic>Gap Junctions - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Oocytes - drug effects</topic><topic>Oocytes - metabolism</topic><topic>purinergic</topic><topic>Rodents</topic><topic>Schwann cell</topic><topic>Schwann Cells - drug effects</topic><topic>Schwann Cells - metabolism</topic><topic>Sciatic Nerve - drug effects</topic><topic>Sciatic Nerve - metabolism</topic><topic>X-linked Charcot-Marie-Tooth disease</topic><topic>Xenopus laevis</topic><topic>Xenopus oocytes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nualart-Marti, Anna</creatorcontrib><creatorcontrib>del Molino, Ezequiel Mas</creatorcontrib><creatorcontrib>Grandes, Xènia</creatorcontrib><creatorcontrib>Bahima, Laia</creatorcontrib><creatorcontrib>Martin-Satué, Mireia</creatorcontrib><creatorcontrib>Puchal, Rafel</creatorcontrib><creatorcontrib>Fasciani, Ilaria</creatorcontrib><creatorcontrib>González-Nieto, Daniel</creatorcontrib><creatorcontrib>Ziganshin, Bulat</creatorcontrib><creatorcontrib>Llobet, Artur</creatorcontrib><creatorcontrib>Barrio, Luis C.</creatorcontrib><creatorcontrib>Solsona, Carles</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Glia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nualart-Marti, Anna</au><au>del Molino, Ezequiel Mas</au><au>Grandes, Xènia</au><au>Bahima, Laia</au><au>Martin-Satué, Mireia</au><au>Puchal, Rafel</au><au>Fasciani, Ilaria</au><au>González-Nieto, Daniel</au><au>Ziganshin, Bulat</au><au>Llobet, Artur</au><au>Barrio, Luis C.</au><au>Solsona, Carles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of connexin 32 hemichannels in the release of ATP from peripheral nerves</atitle><jtitle>Glia</jtitle><addtitle>Glia</addtitle><date>2013-12</date><risdate>2013</risdate><volume>61</volume><issue>12</issue><spage>1976</spage><epage>1989</epage><pages>1976-1989</pages><issn>0894-1491</issn><eissn>1098-1136</eissn><coden>GLIAEJ</coden><abstract>Extracellular purines elicit strong signals in the nervous system. Adenosine‐5′‐triphosphate (ATP) does not spontaneously cross the plasma membrane, and nervous cells secrete ATP by exocytosis or through plasma membrane proteins such as connexin hemichannels. Using a combination of imaging, luminescence and electrophysiological techniques, we explored the possibility that Connexin 32 (Cx32), expressed in Schwann cells (SCs) myelinating the peripheral nervous system could be an important source of ATP in peripheral nerves. We triggered the release of ATP in vivo from mice sciatic nerves by electrical stimulation and from cultured SCs by high extracellular potassium concentration‐evoked depolarization. No ATP was detected in the extracellular media after treatment of the sciatic nerve with Octanol or Carbenoxolone, and ATP release was significantly inhibited after silencing Cx32 from SCs cultures. We investigated the permeability of Cx32 to ATP by expressing Cx32 hemichannels in Xenopus laevis oocytes. We found that ATP release is coupled to the inward tail current generated after the activation of Cx32 hemichannels by depolarization pulses, and it is sensitive to low extracellular calcium concentrations. Moreover, we found altered ATP release in mutated Cx32 hemichannels related to the X‐linked form of Charcot‐Marie‐Tooth disease, suggesting that purinergic‐mediated signaling in peripheral nerves could underlie the physiopathology of this neuropathy. GLIA 2013;61:1976–1989</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>24123415</pmid><doi>10.1002/glia.22568</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0894-1491
ispartof Glia, 2013-12, Vol.61 (12), p.1976-1989
issn 0894-1491
1098-1136
language eng
recordid cdi_proquest_miscellaneous_1464511456
source MEDLINE; Access via Wiley Online Library
subjects Adenosine Triphosphate - metabolism
Animals
Calcium
Carbenoxolone - pharmacology
Connexins - genetics
Connexins - metabolism
Electric Stimulation
gap junction
Gap Junction beta-1 Protein
Gap Junctions - drug effects
Gap Junctions - genetics
Gap Junctions - metabolism
Male
Mice
Oocytes - drug effects
Oocytes - metabolism
purinergic
Rodents
Schwann cell
Schwann Cells - drug effects
Schwann Cells - metabolism
Sciatic Nerve - drug effects
Sciatic Nerve - metabolism
X-linked Charcot-Marie-Tooth disease
Xenopus laevis
Xenopus oocytes
title Role of connexin 32 hemichannels in the release of ATP from peripheral nerves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A15%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20connexin%2032%20hemichannels%20in%20the%20release%20of%20ATP%20from%20peripheral%20nerves&rft.jtitle=Glia&rft.au=Nualart-Marti,%20Anna&rft.date=2013-12&rft.volume=61&rft.issue=12&rft.spage=1976&rft.epage=1989&rft.pages=1976-1989&rft.issn=0894-1491&rft.eissn=1098-1136&rft.coden=GLIAEJ&rft_id=info:doi/10.1002/glia.22568&rft_dat=%3Cproquest_pubme%3E1464511456%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1445467966&rft_id=info:pmid/24123415&rfr_iscdi=true