Role of connexin 32 hemichannels in the release of ATP from peripheral nerves
Extracellular purines elicit strong signals in the nervous system. Adenosine‐5′‐triphosphate (ATP) does not spontaneously cross the plasma membrane, and nervous cells secrete ATP by exocytosis or through plasma membrane proteins such as connexin hemichannels. Using a combination of imaging, luminesc...
Gespeichert in:
Veröffentlicht in: | Glia 2013-12, Vol.61 (12), p.1976-1989 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1989 |
---|---|
container_issue | 12 |
container_start_page | 1976 |
container_title | Glia |
container_volume | 61 |
creator | Nualart-Marti, Anna del Molino, Ezequiel Mas Grandes, Xènia Bahima, Laia Martin-Satué, Mireia Puchal, Rafel Fasciani, Ilaria González-Nieto, Daniel Ziganshin, Bulat Llobet, Artur Barrio, Luis C. Solsona, Carles |
description | Extracellular purines elicit strong signals in the nervous system. Adenosine‐5′‐triphosphate (ATP) does not spontaneously cross the plasma membrane, and nervous cells secrete ATP by exocytosis or through plasma membrane proteins such as connexin hemichannels. Using a combination of imaging, luminescence and electrophysiological techniques, we explored the possibility that Connexin 32 (Cx32), expressed in Schwann cells (SCs) myelinating the peripheral nervous system could be an important source of ATP in peripheral nerves. We triggered the release of ATP in vivo from mice sciatic nerves by electrical stimulation and from cultured SCs by high extracellular potassium concentration‐evoked depolarization. No ATP was detected in the extracellular media after treatment of the sciatic nerve with Octanol or Carbenoxolone, and ATP release was significantly inhibited after silencing Cx32 from SCs cultures. We investigated the permeability of Cx32 to ATP by expressing Cx32 hemichannels in Xenopus laevis oocytes. We found that ATP release is coupled to the inward tail current generated after the activation of Cx32 hemichannels by depolarization pulses, and it is sensitive to low extracellular calcium concentrations. Moreover, we found altered ATP release in mutated Cx32 hemichannels related to the X‐linked form of Charcot‐Marie‐Tooth disease, suggesting that purinergic‐mediated signaling in peripheral nerves could underlie the physiopathology of this neuropathy. GLIA 2013;61:1976–1989 |
doi_str_mv | 10.1002/glia.22568 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1464511456</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1464511456</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4598-960ad19b7d48bf773bc6ea9d6269106597b607d09f22ccee4581a91eb671aba23</originalsourceid><addsrcrecordid>eNqNkU1PGzEQhq0KBIFy6Q9AlrhwWfB4_bE-RlDSSCmNEFWPlnd3liz17qZ2wse_r5NQDj1xsj1-3lcz8xLyBdgFMMYvH3zrLjiXqvhERsBMkQHkao-MWGFEBsLAITmK8ZExSA99QA65AJ4LkCPy_W7wSIeGVkPf40vb05zTBXZttXCp4CNNpdUCaUCPLm7R8f2cNmHo6BJDu1xgcJ72GJ4wfib7jfMRT97OY_Lz5uv91bds9mMyvRrPskrI1J5RzNVgSl2Lomy0zstKoTO14soAU9LoUjFdM9NwXlWIQhbgDGCpNLjS8fyYnO98l2H4s8a4sl0bK_Te9TisowWhhEzDSvUBVGhgmhUioWf_oY_DOvRpkA0lhdJGbQxP36h12WFtl6HtXHi1_3aaANgBz63H1_d_YHaTlt2kZbdp2clsOt7ekibbadq4wpd3jQu_rdK5lvbX7cTe5cX15Hp-Y4v8L8TFk2o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1445467966</pqid></control><display><type>article</type><title>Role of connexin 32 hemichannels in the release of ATP from peripheral nerves</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Nualart-Marti, Anna ; del Molino, Ezequiel Mas ; Grandes, Xènia ; Bahima, Laia ; Martin-Satué, Mireia ; Puchal, Rafel ; Fasciani, Ilaria ; González-Nieto, Daniel ; Ziganshin, Bulat ; Llobet, Artur ; Barrio, Luis C. ; Solsona, Carles</creator><creatorcontrib>Nualart-Marti, Anna ; del Molino, Ezequiel Mas ; Grandes, Xènia ; Bahima, Laia ; Martin-Satué, Mireia ; Puchal, Rafel ; Fasciani, Ilaria ; González-Nieto, Daniel ; Ziganshin, Bulat ; Llobet, Artur ; Barrio, Luis C. ; Solsona, Carles</creatorcontrib><description>Extracellular purines elicit strong signals in the nervous system. Adenosine‐5′‐triphosphate (ATP) does not spontaneously cross the plasma membrane, and nervous cells secrete ATP by exocytosis or through plasma membrane proteins such as connexin hemichannels. Using a combination of imaging, luminescence and electrophysiological techniques, we explored the possibility that Connexin 32 (Cx32), expressed in Schwann cells (SCs) myelinating the peripheral nervous system could be an important source of ATP in peripheral nerves. We triggered the release of ATP in vivo from mice sciatic nerves by electrical stimulation and from cultured SCs by high extracellular potassium concentration‐evoked depolarization. No ATP was detected in the extracellular media after treatment of the sciatic nerve with Octanol or Carbenoxolone, and ATP release was significantly inhibited after silencing Cx32 from SCs cultures. We investigated the permeability of Cx32 to ATP by expressing Cx32 hemichannels in Xenopus laevis oocytes. We found that ATP release is coupled to the inward tail current generated after the activation of Cx32 hemichannels by depolarization pulses, and it is sensitive to low extracellular calcium concentrations. Moreover, we found altered ATP release in mutated Cx32 hemichannels related to the X‐linked form of Charcot‐Marie‐Tooth disease, suggesting that purinergic‐mediated signaling in peripheral nerves could underlie the physiopathology of this neuropathy. GLIA 2013;61:1976–1989</description><identifier>ISSN: 0894-1491</identifier><identifier>EISSN: 1098-1136</identifier><identifier>DOI: 10.1002/glia.22568</identifier><identifier>PMID: 24123415</identifier><identifier>CODEN: GLIAEJ</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Adenosine Triphosphate - metabolism ; Animals ; Calcium ; Carbenoxolone - pharmacology ; Connexins - genetics ; Connexins - metabolism ; Electric Stimulation ; gap junction ; Gap Junction beta-1 Protein ; Gap Junctions - drug effects ; Gap Junctions - genetics ; Gap Junctions - metabolism ; Male ; Mice ; Oocytes - drug effects ; Oocytes - metabolism ; purinergic ; Rodents ; Schwann cell ; Schwann Cells - drug effects ; Schwann Cells - metabolism ; Sciatic Nerve - drug effects ; Sciatic Nerve - metabolism ; X-linked Charcot-Marie-Tooth disease ; Xenopus laevis ; Xenopus oocytes</subject><ispartof>Glia, 2013-12, Vol.61 (12), p.1976-1989</ispartof><rights>Copyright © 2013 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4598-960ad19b7d48bf773bc6ea9d6269106597b607d09f22ccee4581a91eb671aba23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fglia.22568$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fglia.22568$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24123415$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nualart-Marti, Anna</creatorcontrib><creatorcontrib>del Molino, Ezequiel Mas</creatorcontrib><creatorcontrib>Grandes, Xènia</creatorcontrib><creatorcontrib>Bahima, Laia</creatorcontrib><creatorcontrib>Martin-Satué, Mireia</creatorcontrib><creatorcontrib>Puchal, Rafel</creatorcontrib><creatorcontrib>Fasciani, Ilaria</creatorcontrib><creatorcontrib>González-Nieto, Daniel</creatorcontrib><creatorcontrib>Ziganshin, Bulat</creatorcontrib><creatorcontrib>Llobet, Artur</creatorcontrib><creatorcontrib>Barrio, Luis C.</creatorcontrib><creatorcontrib>Solsona, Carles</creatorcontrib><title>Role of connexin 32 hemichannels in the release of ATP from peripheral nerves</title><title>Glia</title><addtitle>Glia</addtitle><description>Extracellular purines elicit strong signals in the nervous system. Adenosine‐5′‐triphosphate (ATP) does not spontaneously cross the plasma membrane, and nervous cells secrete ATP by exocytosis or through plasma membrane proteins such as connexin hemichannels. Using a combination of imaging, luminescence and electrophysiological techniques, we explored the possibility that Connexin 32 (Cx32), expressed in Schwann cells (SCs) myelinating the peripheral nervous system could be an important source of ATP in peripheral nerves. We triggered the release of ATP in vivo from mice sciatic nerves by electrical stimulation and from cultured SCs by high extracellular potassium concentration‐evoked depolarization. No ATP was detected in the extracellular media after treatment of the sciatic nerve with Octanol or Carbenoxolone, and ATP release was significantly inhibited after silencing Cx32 from SCs cultures. We investigated the permeability of Cx32 to ATP by expressing Cx32 hemichannels in Xenopus laevis oocytes. We found that ATP release is coupled to the inward tail current generated after the activation of Cx32 hemichannels by depolarization pulses, and it is sensitive to low extracellular calcium concentrations. Moreover, we found altered ATP release in mutated Cx32 hemichannels related to the X‐linked form of Charcot‐Marie‐Tooth disease, suggesting that purinergic‐mediated signaling in peripheral nerves could underlie the physiopathology of this neuropathy. GLIA 2013;61:1976–1989</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>Calcium</subject><subject>Carbenoxolone - pharmacology</subject><subject>Connexins - genetics</subject><subject>Connexins - metabolism</subject><subject>Electric Stimulation</subject><subject>gap junction</subject><subject>Gap Junction beta-1 Protein</subject><subject>Gap Junctions - drug effects</subject><subject>Gap Junctions - genetics</subject><subject>Gap Junctions - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Oocytes - drug effects</subject><subject>Oocytes - metabolism</subject><subject>purinergic</subject><subject>Rodents</subject><subject>Schwann cell</subject><subject>Schwann Cells - drug effects</subject><subject>Schwann Cells - metabolism</subject><subject>Sciatic Nerve - drug effects</subject><subject>Sciatic Nerve - metabolism</subject><subject>X-linked Charcot-Marie-Tooth disease</subject><subject>Xenopus laevis</subject><subject>Xenopus oocytes</subject><issn>0894-1491</issn><issn>1098-1136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1PGzEQhq0KBIFy6Q9AlrhwWfB4_bE-RlDSSCmNEFWPlnd3liz17qZ2wse_r5NQDj1xsj1-3lcz8xLyBdgFMMYvH3zrLjiXqvhERsBMkQHkao-MWGFEBsLAITmK8ZExSA99QA65AJ4LkCPy_W7wSIeGVkPf40vb05zTBXZttXCp4CNNpdUCaUCPLm7R8f2cNmHo6BJDu1xgcJ72GJ4wfib7jfMRT97OY_Lz5uv91bds9mMyvRrPskrI1J5RzNVgSl2Lomy0zstKoTO14soAU9LoUjFdM9NwXlWIQhbgDGCpNLjS8fyYnO98l2H4s8a4sl0bK_Te9TisowWhhEzDSvUBVGhgmhUioWf_oY_DOvRpkA0lhdJGbQxP36h12WFtl6HtXHi1_3aaANgBz63H1_d_YHaTlt2kZbdp2clsOt7ekibbadq4wpd3jQu_rdK5lvbX7cTe5cX15Hp-Y4v8L8TFk2o</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Nualart-Marti, Anna</creator><creator>del Molino, Ezequiel Mas</creator><creator>Grandes, Xènia</creator><creator>Bahima, Laia</creator><creator>Martin-Satué, Mireia</creator><creator>Puchal, Rafel</creator><creator>Fasciani, Ilaria</creator><creator>González-Nieto, Daniel</creator><creator>Ziganshin, Bulat</creator><creator>Llobet, Artur</creator><creator>Barrio, Luis C.</creator><creator>Solsona, Carles</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QL</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201312</creationdate><title>Role of connexin 32 hemichannels in the release of ATP from peripheral nerves</title><author>Nualart-Marti, Anna ; del Molino, Ezequiel Mas ; Grandes, Xènia ; Bahima, Laia ; Martin-Satué, Mireia ; Puchal, Rafel ; Fasciani, Ilaria ; González-Nieto, Daniel ; Ziganshin, Bulat ; Llobet, Artur ; Barrio, Luis C. ; Solsona, Carles</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4598-960ad19b7d48bf773bc6ea9d6269106597b607d09f22ccee4581a91eb671aba23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>Calcium</topic><topic>Carbenoxolone - pharmacology</topic><topic>Connexins - genetics</topic><topic>Connexins - metabolism</topic><topic>Electric Stimulation</topic><topic>gap junction</topic><topic>Gap Junction beta-1 Protein</topic><topic>Gap Junctions - drug effects</topic><topic>Gap Junctions - genetics</topic><topic>Gap Junctions - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Oocytes - drug effects</topic><topic>Oocytes - metabolism</topic><topic>purinergic</topic><topic>Rodents</topic><topic>Schwann cell</topic><topic>Schwann Cells - drug effects</topic><topic>Schwann Cells - metabolism</topic><topic>Sciatic Nerve - drug effects</topic><topic>Sciatic Nerve - metabolism</topic><topic>X-linked Charcot-Marie-Tooth disease</topic><topic>Xenopus laevis</topic><topic>Xenopus oocytes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nualart-Marti, Anna</creatorcontrib><creatorcontrib>del Molino, Ezequiel Mas</creatorcontrib><creatorcontrib>Grandes, Xènia</creatorcontrib><creatorcontrib>Bahima, Laia</creatorcontrib><creatorcontrib>Martin-Satué, Mireia</creatorcontrib><creatorcontrib>Puchal, Rafel</creatorcontrib><creatorcontrib>Fasciani, Ilaria</creatorcontrib><creatorcontrib>González-Nieto, Daniel</creatorcontrib><creatorcontrib>Ziganshin, Bulat</creatorcontrib><creatorcontrib>Llobet, Artur</creatorcontrib><creatorcontrib>Barrio, Luis C.</creatorcontrib><creatorcontrib>Solsona, Carles</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Glia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nualart-Marti, Anna</au><au>del Molino, Ezequiel Mas</au><au>Grandes, Xènia</au><au>Bahima, Laia</au><au>Martin-Satué, Mireia</au><au>Puchal, Rafel</au><au>Fasciani, Ilaria</au><au>González-Nieto, Daniel</au><au>Ziganshin, Bulat</au><au>Llobet, Artur</au><au>Barrio, Luis C.</au><au>Solsona, Carles</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of connexin 32 hemichannels in the release of ATP from peripheral nerves</atitle><jtitle>Glia</jtitle><addtitle>Glia</addtitle><date>2013-12</date><risdate>2013</risdate><volume>61</volume><issue>12</issue><spage>1976</spage><epage>1989</epage><pages>1976-1989</pages><issn>0894-1491</issn><eissn>1098-1136</eissn><coden>GLIAEJ</coden><abstract>Extracellular purines elicit strong signals in the nervous system. Adenosine‐5′‐triphosphate (ATP) does not spontaneously cross the plasma membrane, and nervous cells secrete ATP by exocytosis or through plasma membrane proteins such as connexin hemichannels. Using a combination of imaging, luminescence and electrophysiological techniques, we explored the possibility that Connexin 32 (Cx32), expressed in Schwann cells (SCs) myelinating the peripheral nervous system could be an important source of ATP in peripheral nerves. We triggered the release of ATP in vivo from mice sciatic nerves by electrical stimulation and from cultured SCs by high extracellular potassium concentration‐evoked depolarization. No ATP was detected in the extracellular media after treatment of the sciatic nerve with Octanol or Carbenoxolone, and ATP release was significantly inhibited after silencing Cx32 from SCs cultures. We investigated the permeability of Cx32 to ATP by expressing Cx32 hemichannels in Xenopus laevis oocytes. We found that ATP release is coupled to the inward tail current generated after the activation of Cx32 hemichannels by depolarization pulses, and it is sensitive to low extracellular calcium concentrations. Moreover, we found altered ATP release in mutated Cx32 hemichannels related to the X‐linked form of Charcot‐Marie‐Tooth disease, suggesting that purinergic‐mediated signaling in peripheral nerves could underlie the physiopathology of this neuropathy. GLIA 2013;61:1976–1989</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>24123415</pmid><doi>10.1002/glia.22568</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-1491 |
ispartof | Glia, 2013-12, Vol.61 (12), p.1976-1989 |
issn | 0894-1491 1098-1136 |
language | eng |
recordid | cdi_proquest_miscellaneous_1464511456 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Adenosine Triphosphate - metabolism Animals Calcium Carbenoxolone - pharmacology Connexins - genetics Connexins - metabolism Electric Stimulation gap junction Gap Junction beta-1 Protein Gap Junctions - drug effects Gap Junctions - genetics Gap Junctions - metabolism Male Mice Oocytes - drug effects Oocytes - metabolism purinergic Rodents Schwann cell Schwann Cells - drug effects Schwann Cells - metabolism Sciatic Nerve - drug effects Sciatic Nerve - metabolism X-linked Charcot-Marie-Tooth disease Xenopus laevis Xenopus oocytes |
title | Role of connexin 32 hemichannels in the release of ATP from peripheral nerves |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T02%3A15%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20connexin%2032%20hemichannels%20in%20the%20release%20of%20ATP%20from%20peripheral%20nerves&rft.jtitle=Glia&rft.au=Nualart-Marti,%20Anna&rft.date=2013-12&rft.volume=61&rft.issue=12&rft.spage=1976&rft.epage=1989&rft.pages=1976-1989&rft.issn=0894-1491&rft.eissn=1098-1136&rft.coden=GLIAEJ&rft_id=info:doi/10.1002/glia.22568&rft_dat=%3Cproquest_pubme%3E1464511456%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1445467966&rft_id=info:pmid/24123415&rfr_iscdi=true |