Thin-film composite hollow fiber membranes for pressure retarded osmosis (PRO) process with high power density

► For the first time, a specially designed PRO TFC hollow fiber has been developed. ► It can hold up as high as 9 bar hydrostatic pressure with 0.98 mm inner diameter. ► A power density of 10.6 W/m 2 can be achieved using seawater and wastewater brines. ► This hollow fiber has great potential for PR...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of membrane science 2012-02, Vol.389, p.25-33
Hauptverfasser: Chou, Shuren, Wang, Rong, Shi, Lei, She, Qianhong, Tang, Chuyang, Fane, Anthony Gordon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 33
container_issue
container_start_page 25
container_title Journal of membrane science
container_volume 389
creator Chou, Shuren
Wang, Rong
Shi, Lei
She, Qianhong
Tang, Chuyang
Fane, Anthony Gordon
description ► For the first time, a specially designed PRO TFC hollow fiber has been developed. ► It can hold up as high as 9 bar hydrostatic pressure with 0.98 mm inner diameter. ► A power density of 10.6 W/m 2 can be achieved using seawater and wastewater brines. ► This hollow fiber has great potential for PRO to harvest salinity gradient energy. For the first time, a specially designed pressure retarded osmosis (PRO) hollow fiber membrane has been successfully developed and applied in the PRO process to demonstrate its potential for power generation. The membrane fabrication method is similar to that used for making thin-film composite (TFC) forward osmosis hollow fiber membranes, but further optimization and improvement have led to a new type of TFC hollow fiber membranes with much greater mechanical strength in addition to its excellent separation property and high water flux. The TFC PRO hollow fiber membranes have a water permeability ( A) of 9.22 × 10 −12 m/(s Pa), salt permeability ( B) of 3.86 × 10 −8 m/s and structural parameter ( S) of 4.6 × 10 −4 m. It can withstand hydrostatic pressure as high as 9 bar with its relatively large dimension of 0.98 mm lumen diameter. This PRO hollow fiber membrane is superior to all other PRO membranes reported in the open literature in terms of power density. A power density as high as 10.6 W/m 2 can be achieved using seawater brine (1.0 M NaCl) and wastewater brine (40 mM NaCl), which suggests that the newly developed PRO hollow fiber membrane has great potential to be applied in PRO processes to harvest salinity gradient energy. A higher pressure is preferred as it allows generation of higher power density (pressures of 12 bar may be optimal for seawater as the high salinity stream), and this can be realized by reduced fiber dimension. Further optimization of the membrane structure will be performed.
doi_str_mv 10.1016/j.memsci.2011.10.002
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1464506253</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S037673881100737X</els_id><sourcerecordid>1464506253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-6a2efa66520849a11d1a6b1b356982a46dffb7dbd251addc98d8c8af3ac87c093</originalsourceid><addsrcrecordid>eNp9kE1r3DAQhkVpoduk_6BQXQrpwRt92LJ8KZSQfkAgJR9nIUujWIttbSVvl_z7zuLQY0-C0TPvzDyEfOBsyxlXl7vtBFNxcSsY51jaMiZekQ3XrawkF_I12TDZqqqVWr8l70rZMcZbprsNmR-GOFchjhN1adqnEhegQxrHdKQh9pApRvfZzlBoSJnuM5RyyEAzLDZ78DSVCbsKvfh1d_sZ_5NDgh7jMtAhPg10n46Y4mHG6Odz8ibYscD7l_eMPH67frj6Ud3cfv959fWmcrVkS6WsgGCVagTTdWc599yqnveyUZ0WtlY-hL71vRcNt967TnvttA3SOt061skzcrHm4j6_D1AWM8XiYBzxkHQohteqbpgSjUS0XlGXUykZgtnnONn8bDgzJ71mZ1a95qT3VEW92PbpZYItzo4BFblY_vWKphOt4hy5jysXbDL2KSPzeI9BijGm8TqFxJeVABTyJ0I2OAtmBz5mcIvxKf5_lb_d-Z1f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464506253</pqid></control><display><type>article</type><title>Thin-film composite hollow fiber membranes for pressure retarded osmosis (PRO) process with high power density</title><source>Elsevier ScienceDirect Journals</source><creator>Chou, Shuren ; Wang, Rong ; Shi, Lei ; She, Qianhong ; Tang, Chuyang ; Fane, Anthony Gordon</creator><creatorcontrib>Chou, Shuren ; Wang, Rong ; Shi, Lei ; She, Qianhong ; Tang, Chuyang ; Fane, Anthony Gordon</creatorcontrib><description>► For the first time, a specially designed PRO TFC hollow fiber has been developed. ► It can hold up as high as 9 bar hydrostatic pressure with 0.98 mm inner diameter. ► A power density of 10.6 W/m 2 can be achieved using seawater and wastewater brines. ► This hollow fiber has great potential for PRO to harvest salinity gradient energy. For the first time, a specially designed pressure retarded osmosis (PRO) hollow fiber membrane has been successfully developed and applied in the PRO process to demonstrate its potential for power generation. The membrane fabrication method is similar to that used for making thin-film composite (TFC) forward osmosis hollow fiber membranes, but further optimization and improvement have led to a new type of TFC hollow fiber membranes with much greater mechanical strength in addition to its excellent separation property and high water flux. The TFC PRO hollow fiber membranes have a water permeability ( A) of 9.22 × 10 −12 m/(s Pa), salt permeability ( B) of 3.86 × 10 −8 m/s and structural parameter ( S) of 4.6 × 10 −4 m. It can withstand hydrostatic pressure as high as 9 bar with its relatively large dimension of 0.98 mm lumen diameter. This PRO hollow fiber membrane is superior to all other PRO membranes reported in the open literature in terms of power density. A power density as high as 10.6 W/m 2 can be achieved using seawater brine (1.0 M NaCl) and wastewater brine (40 mM NaCl), which suggests that the newly developed PRO hollow fiber membrane has great potential to be applied in PRO processes to harvest salinity gradient energy. A higher pressure is preferred as it allows generation of higher power density (pressures of 12 bar may be optimal for seawater as the high salinity stream), and this can be realized by reduced fiber dimension. Further optimization of the membrane structure will be performed.</description><identifier>ISSN: 0376-7388</identifier><identifier>EISSN: 1873-3123</identifier><identifier>DOI: 10.1016/j.memsci.2011.10.002</identifier><identifier>CODEN: JMESDO</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>artificial membranes ; Chemistry ; Colloidal state and disperse state ; energy ; Energy generation ; Exact sciences and technology ; General and physical chemistry ; high pressure treatment ; Membranes ; osmosis ; Osmotic power ; permeability ; Power density ; power generation ; Pressure retarded osmosis (PRO) ; salinity ; seawater ; sodium chloride ; Thin-film composite (TFC) hollow fiber membrane ; wastewater</subject><ispartof>Journal of membrane science, 2012-02, Vol.389, p.25-33</ispartof><rights>2011 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-6a2efa66520849a11d1a6b1b356982a46dffb7dbd251addc98d8c8af3ac87c093</citedby><cites>FETCH-LOGICAL-c430t-6a2efa66520849a11d1a6b1b356982a46dffb7dbd251addc98d8c8af3ac87c093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.memsci.2011.10.002$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27903,27904,45974</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=25927611$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chou, Shuren</creatorcontrib><creatorcontrib>Wang, Rong</creatorcontrib><creatorcontrib>Shi, Lei</creatorcontrib><creatorcontrib>She, Qianhong</creatorcontrib><creatorcontrib>Tang, Chuyang</creatorcontrib><creatorcontrib>Fane, Anthony Gordon</creatorcontrib><title>Thin-film composite hollow fiber membranes for pressure retarded osmosis (PRO) process with high power density</title><title>Journal of membrane science</title><description>► For the first time, a specially designed PRO TFC hollow fiber has been developed. ► It can hold up as high as 9 bar hydrostatic pressure with 0.98 mm inner diameter. ► A power density of 10.6 W/m 2 can be achieved using seawater and wastewater brines. ► This hollow fiber has great potential for PRO to harvest salinity gradient energy. For the first time, a specially designed pressure retarded osmosis (PRO) hollow fiber membrane has been successfully developed and applied in the PRO process to demonstrate its potential for power generation. The membrane fabrication method is similar to that used for making thin-film composite (TFC) forward osmosis hollow fiber membranes, but further optimization and improvement have led to a new type of TFC hollow fiber membranes with much greater mechanical strength in addition to its excellent separation property and high water flux. The TFC PRO hollow fiber membranes have a water permeability ( A) of 9.22 × 10 −12 m/(s Pa), salt permeability ( B) of 3.86 × 10 −8 m/s and structural parameter ( S) of 4.6 × 10 −4 m. It can withstand hydrostatic pressure as high as 9 bar with its relatively large dimension of 0.98 mm lumen diameter. This PRO hollow fiber membrane is superior to all other PRO membranes reported in the open literature in terms of power density. A power density as high as 10.6 W/m 2 can be achieved using seawater brine (1.0 M NaCl) and wastewater brine (40 mM NaCl), which suggests that the newly developed PRO hollow fiber membrane has great potential to be applied in PRO processes to harvest salinity gradient energy. A higher pressure is preferred as it allows generation of higher power density (pressures of 12 bar may be optimal for seawater as the high salinity stream), and this can be realized by reduced fiber dimension. Further optimization of the membrane structure will be performed.</description><subject>artificial membranes</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>energy</subject><subject>Energy generation</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>high pressure treatment</subject><subject>Membranes</subject><subject>osmosis</subject><subject>Osmotic power</subject><subject>permeability</subject><subject>Power density</subject><subject>power generation</subject><subject>Pressure retarded osmosis (PRO)</subject><subject>salinity</subject><subject>seawater</subject><subject>sodium chloride</subject><subject>Thin-film composite (TFC) hollow fiber membrane</subject><subject>wastewater</subject><issn>0376-7388</issn><issn>1873-3123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNp9kE1r3DAQhkVpoduk_6BQXQrpwRt92LJ8KZSQfkAgJR9nIUujWIttbSVvl_z7zuLQY0-C0TPvzDyEfOBsyxlXl7vtBFNxcSsY51jaMiZekQ3XrawkF_I12TDZqqqVWr8l70rZMcZbprsNmR-GOFchjhN1adqnEhegQxrHdKQh9pApRvfZzlBoSJnuM5RyyEAzLDZ78DSVCbsKvfh1d_sZ_5NDgh7jMtAhPg10n46Y4mHG6Odz8ibYscD7l_eMPH67frj6Ud3cfv959fWmcrVkS6WsgGCVagTTdWc599yqnveyUZ0WtlY-hL71vRcNt967TnvttA3SOt061skzcrHm4j6_D1AWM8XiYBzxkHQohteqbpgSjUS0XlGXUykZgtnnONn8bDgzJ71mZ1a95qT3VEW92PbpZYItzo4BFblY_vWKphOt4hy5jysXbDL2KSPzeI9BijGm8TqFxJeVABTyJ0I2OAtmBz5mcIvxKf5_lb_d-Z1f</recordid><startdate>20120201</startdate><enddate>20120201</enddate><creator>Chou, Shuren</creator><creator>Wang, Rong</creator><creator>Shi, Lei</creator><creator>She, Qianhong</creator><creator>Tang, Chuyang</creator><creator>Fane, Anthony Gordon</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope></search><sort><creationdate>20120201</creationdate><title>Thin-film composite hollow fiber membranes for pressure retarded osmosis (PRO) process with high power density</title><author>Chou, Shuren ; Wang, Rong ; Shi, Lei ; She, Qianhong ; Tang, Chuyang ; Fane, Anthony Gordon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-6a2efa66520849a11d1a6b1b356982a46dffb7dbd251addc98d8c8af3ac87c093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>artificial membranes</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>energy</topic><topic>Energy generation</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>high pressure treatment</topic><topic>Membranes</topic><topic>osmosis</topic><topic>Osmotic power</topic><topic>permeability</topic><topic>Power density</topic><topic>power generation</topic><topic>Pressure retarded osmosis (PRO)</topic><topic>salinity</topic><topic>seawater</topic><topic>sodium chloride</topic><topic>Thin-film composite (TFC) hollow fiber membrane</topic><topic>wastewater</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chou, Shuren</creatorcontrib><creatorcontrib>Wang, Rong</creatorcontrib><creatorcontrib>Shi, Lei</creatorcontrib><creatorcontrib>She, Qianhong</creatorcontrib><creatorcontrib>Tang, Chuyang</creatorcontrib><creatorcontrib>Fane, Anthony Gordon</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of membrane science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chou, Shuren</au><au>Wang, Rong</au><au>Shi, Lei</au><au>She, Qianhong</au><au>Tang, Chuyang</au><au>Fane, Anthony Gordon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thin-film composite hollow fiber membranes for pressure retarded osmosis (PRO) process with high power density</atitle><jtitle>Journal of membrane science</jtitle><date>2012-02-01</date><risdate>2012</risdate><volume>389</volume><spage>25</spage><epage>33</epage><pages>25-33</pages><issn>0376-7388</issn><eissn>1873-3123</eissn><coden>JMESDO</coden><abstract>► For the first time, a specially designed PRO TFC hollow fiber has been developed. ► It can hold up as high as 9 bar hydrostatic pressure with 0.98 mm inner diameter. ► A power density of 10.6 W/m 2 can be achieved using seawater and wastewater brines. ► This hollow fiber has great potential for PRO to harvest salinity gradient energy. For the first time, a specially designed pressure retarded osmosis (PRO) hollow fiber membrane has been successfully developed and applied in the PRO process to demonstrate its potential for power generation. The membrane fabrication method is similar to that used for making thin-film composite (TFC) forward osmosis hollow fiber membranes, but further optimization and improvement have led to a new type of TFC hollow fiber membranes with much greater mechanical strength in addition to its excellent separation property and high water flux. The TFC PRO hollow fiber membranes have a water permeability ( A) of 9.22 × 10 −12 m/(s Pa), salt permeability ( B) of 3.86 × 10 −8 m/s and structural parameter ( S) of 4.6 × 10 −4 m. It can withstand hydrostatic pressure as high as 9 bar with its relatively large dimension of 0.98 mm lumen diameter. This PRO hollow fiber membrane is superior to all other PRO membranes reported in the open literature in terms of power density. A power density as high as 10.6 W/m 2 can be achieved using seawater brine (1.0 M NaCl) and wastewater brine (40 mM NaCl), which suggests that the newly developed PRO hollow fiber membrane has great potential to be applied in PRO processes to harvest salinity gradient energy. A higher pressure is preferred as it allows generation of higher power density (pressures of 12 bar may be optimal for seawater as the high salinity stream), and this can be realized by reduced fiber dimension. Further optimization of the membrane structure will be performed.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.memsci.2011.10.002</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0376-7388
ispartof Journal of membrane science, 2012-02, Vol.389, p.25-33
issn 0376-7388
1873-3123
language eng
recordid cdi_proquest_miscellaneous_1464506253
source Elsevier ScienceDirect Journals
subjects artificial membranes
Chemistry
Colloidal state and disperse state
energy
Energy generation
Exact sciences and technology
General and physical chemistry
high pressure treatment
Membranes
osmosis
Osmotic power
permeability
Power density
power generation
Pressure retarded osmosis (PRO)
salinity
seawater
sodium chloride
Thin-film composite (TFC) hollow fiber membrane
wastewater
title Thin-film composite hollow fiber membranes for pressure retarded osmosis (PRO) process with high power density
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A52%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thin-film%20composite%20hollow%20fiber%20membranes%20for%20pressure%20retarded%20osmosis%20(PRO)%20process%20with%20high%20power%20density&rft.jtitle=Journal%20of%20membrane%20science&rft.au=Chou,%20Shuren&rft.date=2012-02-01&rft.volume=389&rft.spage=25&rft.epage=33&rft.pages=25-33&rft.issn=0376-7388&rft.eissn=1873-3123&rft.coden=JMESDO&rft_id=info:doi/10.1016/j.memsci.2011.10.002&rft_dat=%3Cproquest_cross%3E1464506253%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464506253&rft_id=info:pmid/&rft_els_id=S037673881100737X&rfr_iscdi=true