HLA Typing from 1000 Genomes Whole Genome and Whole Exome Illumina Data: e78410
Specific HLA genotypes are known to be linked to either resistance or susceptibility to certain diseases or sensitivity to certain drugs. In addition, high accuracy HLA typing is crucial for organ and bone marrow transplantation. The most widespread high resolution HLA typing method used to date is...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-11, Vol.8 (11) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | PloS one |
container_volume | 8 |
creator | Major, Endre Rigo, Krisztina Hague, Tim Berces, Attila Juhos, Szilveszter |
description | Specific HLA genotypes are known to be linked to either resistance or susceptibility to certain diseases or sensitivity to certain drugs. In addition, high accuracy HLA typing is crucial for organ and bone marrow transplantation. The most widespread high resolution HLA typing method used to date is Sanger sequencing based typing (SBT), and next generation sequencing (NGS) based HLA typing is just starting to be adopted as a higher throughput, lower cost alternative. By HLA typing the HapMap subset of the public 1000 Genomes paired Illumina data, we demonstrate that HLA-A, B and C typing is possible from exome sequencing samples with higher than 90% accuracy. The older 1000 Genomes whole genome sequencing read sets are less reliable and generally unsuitable for the purpose of HLA typing. We also propose using coverage % (the extent of exons covered) as a quality check (QC) measure to increase reliability. |
doi_str_mv | 10.1371/journal.pone.0078410 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1464503971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1464503971</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_14645039713</originalsourceid><addsrcrecordid>eNqVjcsKgkAYRocgyC5v0GKWbbR_HK_toptB0EZoKUP9ljLOmKNQbx-FL9DqcA4ffITMGTiMh2xZ6q5RQjq1VugAhJHHYEAsFnPXDlzgIzI2pgTweRQEFjknpzVN33Wh7jRvdEUZANADKl2hoZeHltgbFerWh93r60cpu6pQgm5FK1YUf1dTMsyFNDjrOSGL_S7dJHbd6GeHps2qwlxRSqFQdyZjXuD5wOOQ8T-mH4CVRq4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464503971</pqid></control><display><type>article</type><title>HLA Typing from 1000 Genomes Whole Genome and Whole Exome Illumina Data: e78410</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Major, Endre ; Rigo, Krisztina ; Hague, Tim ; Berces, Attila ; Juhos, Szilveszter</creator><creatorcontrib>Major, Endre ; Rigo, Krisztina ; Hague, Tim ; Berces, Attila ; Juhos, Szilveszter</creatorcontrib><description>Specific HLA genotypes are known to be linked to either resistance or susceptibility to certain diseases or sensitivity to certain drugs. In addition, high accuracy HLA typing is crucial for organ and bone marrow transplantation. The most widespread high resolution HLA typing method used to date is Sanger sequencing based typing (SBT), and next generation sequencing (NGS) based HLA typing is just starting to be adopted as a higher throughput, lower cost alternative. By HLA typing the HapMap subset of the public 1000 Genomes paired Illumina data, we demonstrate that HLA-A, B and C typing is possible from exome sequencing samples with higher than 90% accuracy. The older 1000 Genomes whole genome sequencing read sets are less reliable and generally unsuitable for the purpose of HLA typing. We also propose using coverage % (the extent of exons covered) as a quality check (QC) measure to increase reliability.</description><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0078410</identifier><language>eng</language><subject>Data processing</subject><ispartof>PloS one, 2013-11, Vol.8 (11)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,27905,27906</link.rule.ids></links><search><creatorcontrib>Major, Endre</creatorcontrib><creatorcontrib>Rigo, Krisztina</creatorcontrib><creatorcontrib>Hague, Tim</creatorcontrib><creatorcontrib>Berces, Attila</creatorcontrib><creatorcontrib>Juhos, Szilveszter</creatorcontrib><title>HLA Typing from 1000 Genomes Whole Genome and Whole Exome Illumina Data: e78410</title><title>PloS one</title><description>Specific HLA genotypes are known to be linked to either resistance or susceptibility to certain diseases or sensitivity to certain drugs. In addition, high accuracy HLA typing is crucial for organ and bone marrow transplantation. The most widespread high resolution HLA typing method used to date is Sanger sequencing based typing (SBT), and next generation sequencing (NGS) based HLA typing is just starting to be adopted as a higher throughput, lower cost alternative. By HLA typing the HapMap subset of the public 1000 Genomes paired Illumina data, we demonstrate that HLA-A, B and C typing is possible from exome sequencing samples with higher than 90% accuracy. The older 1000 Genomes whole genome sequencing read sets are less reliable and generally unsuitable for the purpose of HLA typing. We also propose using coverage % (the extent of exons covered) as a quality check (QC) measure to increase reliability.</description><subject>Data processing</subject><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqVjcsKgkAYRocgyC5v0GKWbbR_HK_toptB0EZoKUP9ljLOmKNQbx-FL9DqcA4ffITMGTiMh2xZ6q5RQjq1VugAhJHHYEAsFnPXDlzgIzI2pgTweRQEFjknpzVN33Wh7jRvdEUZANADKl2hoZeHltgbFerWh93r60cpu6pQgm5FK1YUf1dTMsyFNDjrOSGL_S7dJHbd6GeHps2qwlxRSqFQdyZjXuD5wOOQ8T-mH4CVRq4</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Major, Endre</creator><creator>Rigo, Krisztina</creator><creator>Hague, Tim</creator><creator>Berces, Attila</creator><creator>Juhos, Szilveszter</creator><scope>7T5</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20131101</creationdate><title>HLA Typing from 1000 Genomes Whole Genome and Whole Exome Illumina Data: e78410</title><author>Major, Endre ; Rigo, Krisztina ; Hague, Tim ; Berces, Attila ; Juhos, Szilveszter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_14645039713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Data processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Major, Endre</creatorcontrib><creatorcontrib>Rigo, Krisztina</creatorcontrib><creatorcontrib>Hague, Tim</creatorcontrib><creatorcontrib>Berces, Attila</creatorcontrib><creatorcontrib>Juhos, Szilveszter</creatorcontrib><collection>Immunology Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Major, Endre</au><au>Rigo, Krisztina</au><au>Hague, Tim</au><au>Berces, Attila</au><au>Juhos, Szilveszter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HLA Typing from 1000 Genomes Whole Genome and Whole Exome Illumina Data: e78410</atitle><jtitle>PloS one</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>8</volume><issue>11</issue><eissn>1932-6203</eissn><abstract>Specific HLA genotypes are known to be linked to either resistance or susceptibility to certain diseases or sensitivity to certain drugs. In addition, high accuracy HLA typing is crucial for organ and bone marrow transplantation. The most widespread high resolution HLA typing method used to date is Sanger sequencing based typing (SBT), and next generation sequencing (NGS) based HLA typing is just starting to be adopted as a higher throughput, lower cost alternative. By HLA typing the HapMap subset of the public 1000 Genomes paired Illumina data, we demonstrate that HLA-A, B and C typing is possible from exome sequencing samples with higher than 90% accuracy. The older 1000 Genomes whole genome sequencing read sets are less reliable and generally unsuitable for the purpose of HLA typing. We also propose using coverage % (the extent of exons covered) as a quality check (QC) measure to increase reliability.</abstract><doi>10.1371/journal.pone.0078410</doi></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1932-6203 |
ispartof | PloS one, 2013-11, Vol.8 (11) |
issn | 1932-6203 |
language | eng |
recordid | cdi_proquest_miscellaneous_1464503971 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Data processing |
title | HLA Typing from 1000 Genomes Whole Genome and Whole Exome Illumina Data: e78410 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A34%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HLA%20Typing%20from%201000%20Genomes%20Whole%20Genome%20and%20Whole%20Exome%20Illumina%20Data:%20e78410&rft.jtitle=PloS%20one&rft.au=Major,%20Endre&rft.date=2013-11-01&rft.volume=8&rft.issue=11&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0078410&rft_dat=%3Cproquest%3E1464503971%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464503971&rft_id=info:pmid/&rfr_iscdi=true |