HLA Typing from 1000 Genomes Whole Genome and Whole Exome Illumina Data: e78410

Specific HLA genotypes are known to be linked to either resistance or susceptibility to certain diseases or sensitivity to certain drugs. In addition, high accuracy HLA typing is crucial for organ and bone marrow transplantation. The most widespread high resolution HLA typing method used to date is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2013-11, Vol.8 (11)
Hauptverfasser: Major, Endre, Rigo, Krisztina, Hague, Tim, Berces, Attila, Juhos, Szilveszter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title PloS one
container_volume 8
creator Major, Endre
Rigo, Krisztina
Hague, Tim
Berces, Attila
Juhos, Szilveszter
description Specific HLA genotypes are known to be linked to either resistance or susceptibility to certain diseases or sensitivity to certain drugs. In addition, high accuracy HLA typing is crucial for organ and bone marrow transplantation. The most widespread high resolution HLA typing method used to date is Sanger sequencing based typing (SBT), and next generation sequencing (NGS) based HLA typing is just starting to be adopted as a higher throughput, lower cost alternative. By HLA typing the HapMap subset of the public 1000 Genomes paired Illumina data, we demonstrate that HLA-A, B and C typing is possible from exome sequencing samples with higher than 90% accuracy. The older 1000 Genomes whole genome sequencing read sets are less reliable and generally unsuitable for the purpose of HLA typing. We also propose using coverage % (the extent of exons covered) as a quality check (QC) measure to increase reliability.
doi_str_mv 10.1371/journal.pone.0078410
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1464503971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1464503971</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_14645039713</originalsourceid><addsrcrecordid>eNqVjcsKgkAYRocgyC5v0GKWbbR_HK_toptB0EZoKUP9ljLOmKNQbx-FL9DqcA4ffITMGTiMh2xZ6q5RQjq1VugAhJHHYEAsFnPXDlzgIzI2pgTweRQEFjknpzVN33Wh7jRvdEUZANADKl2hoZeHltgbFerWh93r60cpu6pQgm5FK1YUf1dTMsyFNDjrOSGL_S7dJHbd6GeHps2qwlxRSqFQdyZjXuD5wOOQ8T-mH4CVRq4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1464503971</pqid></control><display><type>article</type><title>HLA Typing from 1000 Genomes Whole Genome and Whole Exome Illumina Data: e78410</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Major, Endre ; Rigo, Krisztina ; Hague, Tim ; Berces, Attila ; Juhos, Szilveszter</creator><creatorcontrib>Major, Endre ; Rigo, Krisztina ; Hague, Tim ; Berces, Attila ; Juhos, Szilveszter</creatorcontrib><description>Specific HLA genotypes are known to be linked to either resistance or susceptibility to certain diseases or sensitivity to certain drugs. In addition, high accuracy HLA typing is crucial for organ and bone marrow transplantation. The most widespread high resolution HLA typing method used to date is Sanger sequencing based typing (SBT), and next generation sequencing (NGS) based HLA typing is just starting to be adopted as a higher throughput, lower cost alternative. By HLA typing the HapMap subset of the public 1000 Genomes paired Illumina data, we demonstrate that HLA-A, B and C typing is possible from exome sequencing samples with higher than 90% accuracy. The older 1000 Genomes whole genome sequencing read sets are less reliable and generally unsuitable for the purpose of HLA typing. We also propose using coverage % (the extent of exons covered) as a quality check (QC) measure to increase reliability.</description><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0078410</identifier><language>eng</language><subject>Data processing</subject><ispartof>PloS one, 2013-11, Vol.8 (11)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,861,27905,27906</link.rule.ids></links><search><creatorcontrib>Major, Endre</creatorcontrib><creatorcontrib>Rigo, Krisztina</creatorcontrib><creatorcontrib>Hague, Tim</creatorcontrib><creatorcontrib>Berces, Attila</creatorcontrib><creatorcontrib>Juhos, Szilveszter</creatorcontrib><title>HLA Typing from 1000 Genomes Whole Genome and Whole Exome Illumina Data: e78410</title><title>PloS one</title><description>Specific HLA genotypes are known to be linked to either resistance or susceptibility to certain diseases or sensitivity to certain drugs. In addition, high accuracy HLA typing is crucial for organ and bone marrow transplantation. The most widespread high resolution HLA typing method used to date is Sanger sequencing based typing (SBT), and next generation sequencing (NGS) based HLA typing is just starting to be adopted as a higher throughput, lower cost alternative. By HLA typing the HapMap subset of the public 1000 Genomes paired Illumina data, we demonstrate that HLA-A, B and C typing is possible from exome sequencing samples with higher than 90% accuracy. The older 1000 Genomes whole genome sequencing read sets are less reliable and generally unsuitable for the purpose of HLA typing. We also propose using coverage % (the extent of exons covered) as a quality check (QC) measure to increase reliability.</description><subject>Data processing</subject><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqVjcsKgkAYRocgyC5v0GKWbbR_HK_toptB0EZoKUP9ljLOmKNQbx-FL9DqcA4ffITMGTiMh2xZ6q5RQjq1VugAhJHHYEAsFnPXDlzgIzI2pgTweRQEFjknpzVN33Wh7jRvdEUZANADKl2hoZeHltgbFerWh93r60cpu6pQgm5FK1YUf1dTMsyFNDjrOSGL_S7dJHbd6GeHps2qwlxRSqFQdyZjXuD5wOOQ8T-mH4CVRq4</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Major, Endre</creator><creator>Rigo, Krisztina</creator><creator>Hague, Tim</creator><creator>Berces, Attila</creator><creator>Juhos, Szilveszter</creator><scope>7T5</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20131101</creationdate><title>HLA Typing from 1000 Genomes Whole Genome and Whole Exome Illumina Data: e78410</title><author>Major, Endre ; Rigo, Krisztina ; Hague, Tim ; Berces, Attila ; Juhos, Szilveszter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_14645039713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Data processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Major, Endre</creatorcontrib><creatorcontrib>Rigo, Krisztina</creatorcontrib><creatorcontrib>Hague, Tim</creatorcontrib><creatorcontrib>Berces, Attila</creatorcontrib><creatorcontrib>Juhos, Szilveszter</creatorcontrib><collection>Immunology Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Major, Endre</au><au>Rigo, Krisztina</au><au>Hague, Tim</au><au>Berces, Attila</au><au>Juhos, Szilveszter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HLA Typing from 1000 Genomes Whole Genome and Whole Exome Illumina Data: e78410</atitle><jtitle>PloS one</jtitle><date>2013-11-01</date><risdate>2013</risdate><volume>8</volume><issue>11</issue><eissn>1932-6203</eissn><abstract>Specific HLA genotypes are known to be linked to either resistance or susceptibility to certain diseases or sensitivity to certain drugs. In addition, high accuracy HLA typing is crucial for organ and bone marrow transplantation. The most widespread high resolution HLA typing method used to date is Sanger sequencing based typing (SBT), and next generation sequencing (NGS) based HLA typing is just starting to be adopted as a higher throughput, lower cost alternative. By HLA typing the HapMap subset of the public 1000 Genomes paired Illumina data, we demonstrate that HLA-A, B and C typing is possible from exome sequencing samples with higher than 90% accuracy. The older 1000 Genomes whole genome sequencing read sets are less reliable and generally unsuitable for the purpose of HLA typing. We also propose using coverage % (the extent of exons covered) as a quality check (QC) measure to increase reliability.</abstract><doi>10.1371/journal.pone.0078410</doi></addata></record>
fulltext fulltext
identifier EISSN: 1932-6203
ispartof PloS one, 2013-11, Vol.8 (11)
issn 1932-6203
language eng
recordid cdi_proquest_miscellaneous_1464503971
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Data processing
title HLA Typing from 1000 Genomes Whole Genome and Whole Exome Illumina Data: e78410
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T08%3A34%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HLA%20Typing%20from%201000%20Genomes%20Whole%20Genome%20and%20Whole%20Exome%20Illumina%20Data:%20e78410&rft.jtitle=PloS%20one&rft.au=Major,%20Endre&rft.date=2013-11-01&rft.volume=8&rft.issue=11&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0078410&rft_dat=%3Cproquest%3E1464503971%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1464503971&rft_id=info:pmid/&rfr_iscdi=true