Penicillium purpurogenum produces two GH family 43 enzymes with β-xylosidase activity, one monofunctional and the other bifunctional: Biochemical and structural analyses explain the difference

•Penicillium purpurogenum secretes two GH 43 enzymes with β-xylosidase activity.•The enzymes differ in substrate specificity.•Structural and biochemical analyses explain these differences. β-Xylosidases participate in xylan biodegradation, liberating xylose from the non-reducing end of xylooligosacc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of biochemistry and biophysics 2013-12, Vol.540 (1-2), p.117-124
Hauptverfasser: Ravanal, María Cristina, Alegría-Arcos, Melissa, Gonzalez-Nilo, Fernando Danilo, Eyzaguirre, Jaime
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 124
container_issue 1-2
container_start_page 117
container_title Archives of biochemistry and biophysics
container_volume 540
creator Ravanal, María Cristina
Alegría-Arcos, Melissa
Gonzalez-Nilo, Fernando Danilo
Eyzaguirre, Jaime
description •Penicillium purpurogenum secretes two GH 43 enzymes with β-xylosidase activity.•The enzymes differ in substrate specificity.•Structural and biochemical analyses explain these differences. β-Xylosidases participate in xylan biodegradation, liberating xylose from the non-reducing end of xylooligosaccharides. The fungus Penicillium purpurogenum secretes two enzymes with β-d-xylosidase activity belonging to family 43 of the glycosyl hydrolases. One of these enzymes, arabinofuranosidase 3 (ABF3), is a bifunctional α-l-arabinofuranosidase/xylobiohydrolase active on p-nitrophenyl-α-l-arabinofuranoside (pNPAra) and p-nitrophenyl-β-d-xylopyranoside (pNPXyl) with a KM of 0.65 and 12mM, respectively. The other, β-d-xylosidase 1 (XYL1), is only active on pNPXyl with a KM of 0.55mM. The xyl1 gene was expressed in Pichia pastoris, purified and characterized. The properties of both enzymes were compared in order to explain their difference in substrate specificity. Structural models for each protein were built using homology modeling tools. Molecular docking simulations were used to analyze the interactions defining the affinity of the proteins to both ligands. The structural analysis shows that active complexes (ABF3–pNPXyl, ABF3–pNPAra and XYL1–pNPXyl) possess specific interactions between substrates and catalytic residues, which are absent in the inactive complex (XYL1–pNPAra), while other interactions with non-catalytic residues are found in all complexes. pNPAra is a competitive inhibitor for XYL1 (Ki=2.5mM), confirming that pNPAra does bind to the active site but not to the catalytic residues.
doi_str_mv 10.1016/j.abb.2013.10.017
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1462369457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003986113003378</els_id><sourcerecordid>1462369457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-75a0621ab5cd74daa36deae1db30553319611bb65638c585f6eaea378b0bc0f33</originalsourceid><addsrcrecordid>eNp9Uctu1DAUtRCIDoUPYIO8ZEEGO06cDKygoi1SJVjA2vLjhvHIsQfbaRs-iz_gB_pNOJ0BdkiWrXPvuefK5yD0nJI1JZS_3q2lUuuaUFbwmtDuAVpRsuEVYX3zEK0IIaza9JyeoCcp7QihtOH1Y3RSN7Rvmpqu0K_P4K22ztlpxPsplhO-gV9ADGbSkHC-CfjiEg9ytG7GDcPgf8xjadzYvMV3P6vb2YVkjUyApc722ub5FQ4e8Bh8GCZfasFLh6U3OG8Bh3JFrOy_1hv83ga9hdHqIy_lOOk8xXso3ZzKPrjdO2n9vYaxwwARvIan6NEgXYJnx_cUfT3_8OXssrr6dPHx7N1VpVnLctW1kvCaStVq0zVGSsYNSKBGMdK2jNENp1Qp3nLW67ZvB166knW9IkqTgbFT9PKgW4z5PkHKYrRJg3PSQ5iSWKxlfNO0XaHSA1XHkFKEQeyjHWWcBSViSU7sRElOLMktpZJcmXlxlJ_UCObvxJ-oCuHtgQDlk9cWokjaLgYYG0FnYYL9j_xv46qvRQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1462369457</pqid></control><display><type>article</type><title>Penicillium purpurogenum produces two GH family 43 enzymes with β-xylosidase activity, one monofunctional and the other bifunctional: Biochemical and structural analyses explain the difference</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><source>MEDLINE</source><creator>Ravanal, María Cristina ; Alegría-Arcos, Melissa ; Gonzalez-Nilo, Fernando Danilo ; Eyzaguirre, Jaime</creator><creatorcontrib>Ravanal, María Cristina ; Alegría-Arcos, Melissa ; Gonzalez-Nilo, Fernando Danilo ; Eyzaguirre, Jaime</creatorcontrib><description>•Penicillium purpurogenum secretes two GH 43 enzymes with β-xylosidase activity.•The enzymes differ in substrate specificity.•Structural and biochemical analyses explain these differences. β-Xylosidases participate in xylan biodegradation, liberating xylose from the non-reducing end of xylooligosaccharides. The fungus Penicillium purpurogenum secretes two enzymes with β-d-xylosidase activity belonging to family 43 of the glycosyl hydrolases. One of these enzymes, arabinofuranosidase 3 (ABF3), is a bifunctional α-l-arabinofuranosidase/xylobiohydrolase active on p-nitrophenyl-α-l-arabinofuranoside (pNPAra) and p-nitrophenyl-β-d-xylopyranoside (pNPXyl) with a KM of 0.65 and 12mM, respectively. The other, β-d-xylosidase 1 (XYL1), is only active on pNPXyl with a KM of 0.55mM. The xyl1 gene was expressed in Pichia pastoris, purified and characterized. The properties of both enzymes were compared in order to explain their difference in substrate specificity. Structural models for each protein were built using homology modeling tools. Molecular docking simulations were used to analyze the interactions defining the affinity of the proteins to both ligands. The structural analysis shows that active complexes (ABF3–pNPXyl, ABF3–pNPAra and XYL1–pNPXyl) possess specific interactions between substrates and catalytic residues, which are absent in the inactive complex (XYL1–pNPAra), while other interactions with non-catalytic residues are found in all complexes. pNPAra is a competitive inhibitor for XYL1 (Ki=2.5mM), confirming that pNPAra does bind to the active site but not to the catalytic residues.</description><identifier>ISSN: 0003-9861</identifier><identifier>EISSN: 1096-0384</identifier><identifier>DOI: 10.1016/j.abb.2013.10.017</identifier><identifier>PMID: 24184421</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Glycosyl hydrolase family 43 ; Heterologous expression ; Homology modeling ; Molecular Docking Simulation ; Molecular docking simulations ; Molecular Sequence Data ; Penicillium - enzymology ; Penicillium - genetics ; Penicillium - metabolism ; Penicillium purpurogenum ; Protein Conformation ; Sequence Analysis ; Sequence Homology ; Substrate Specificity ; Xylosidases - biosynthesis ; Xylosidases - chemistry ; Xylosidases - genetics ; Xylosidases - metabolism ; β-d-Xylosidase</subject><ispartof>Archives of biochemistry and biophysics, 2013-12, Vol.540 (1-2), p.117-124</ispartof><rights>2013 Elsevier Inc.</rights><rights>Copyright © 2013 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-75a0621ab5cd74daa36deae1db30553319611bb65638c585f6eaea378b0bc0f33</citedby><cites>FETCH-LOGICAL-c353t-75a0621ab5cd74daa36deae1db30553319611bb65638c585f6eaea378b0bc0f33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.abb.2013.10.017$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24184421$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ravanal, María Cristina</creatorcontrib><creatorcontrib>Alegría-Arcos, Melissa</creatorcontrib><creatorcontrib>Gonzalez-Nilo, Fernando Danilo</creatorcontrib><creatorcontrib>Eyzaguirre, Jaime</creatorcontrib><title>Penicillium purpurogenum produces two GH family 43 enzymes with β-xylosidase activity, one monofunctional and the other bifunctional: Biochemical and structural analyses explain the difference</title><title>Archives of biochemistry and biophysics</title><addtitle>Arch Biochem Biophys</addtitle><description>•Penicillium purpurogenum secretes two GH 43 enzymes with β-xylosidase activity.•The enzymes differ in substrate specificity.•Structural and biochemical analyses explain these differences. β-Xylosidases participate in xylan biodegradation, liberating xylose from the non-reducing end of xylooligosaccharides. The fungus Penicillium purpurogenum secretes two enzymes with β-d-xylosidase activity belonging to family 43 of the glycosyl hydrolases. One of these enzymes, arabinofuranosidase 3 (ABF3), is a bifunctional α-l-arabinofuranosidase/xylobiohydrolase active on p-nitrophenyl-α-l-arabinofuranoside (pNPAra) and p-nitrophenyl-β-d-xylopyranoside (pNPXyl) with a KM of 0.65 and 12mM, respectively. The other, β-d-xylosidase 1 (XYL1), is only active on pNPXyl with a KM of 0.55mM. The xyl1 gene was expressed in Pichia pastoris, purified and characterized. The properties of both enzymes were compared in order to explain their difference in substrate specificity. Structural models for each protein were built using homology modeling tools. Molecular docking simulations were used to analyze the interactions defining the affinity of the proteins to both ligands. The structural analysis shows that active complexes (ABF3–pNPXyl, ABF3–pNPAra and XYL1–pNPXyl) possess specific interactions between substrates and catalytic residues, which are absent in the inactive complex (XYL1–pNPAra), while other interactions with non-catalytic residues are found in all complexes. pNPAra is a competitive inhibitor for XYL1 (Ki=2.5mM), confirming that pNPAra does bind to the active site but not to the catalytic residues.</description><subject>Amino Acid Sequence</subject><subject>Glycosyl hydrolase family 43</subject><subject>Heterologous expression</subject><subject>Homology modeling</subject><subject>Molecular Docking Simulation</subject><subject>Molecular docking simulations</subject><subject>Molecular Sequence Data</subject><subject>Penicillium - enzymology</subject><subject>Penicillium - genetics</subject><subject>Penicillium - metabolism</subject><subject>Penicillium purpurogenum</subject><subject>Protein Conformation</subject><subject>Sequence Analysis</subject><subject>Sequence Homology</subject><subject>Substrate Specificity</subject><subject>Xylosidases - biosynthesis</subject><subject>Xylosidases - chemistry</subject><subject>Xylosidases - genetics</subject><subject>Xylosidases - metabolism</subject><subject>β-d-Xylosidase</subject><issn>0003-9861</issn><issn>1096-0384</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9Uctu1DAUtRCIDoUPYIO8ZEEGO06cDKygoi1SJVjA2vLjhvHIsQfbaRs-iz_gB_pNOJ0BdkiWrXPvuefK5yD0nJI1JZS_3q2lUuuaUFbwmtDuAVpRsuEVYX3zEK0IIaza9JyeoCcp7QihtOH1Y3RSN7Rvmpqu0K_P4K22ztlpxPsplhO-gV9ADGbSkHC-CfjiEg9ytG7GDcPgf8xjadzYvMV3P6vb2YVkjUyApc722ub5FQ4e8Bh8GCZfasFLh6U3OG8Bh3JFrOy_1hv83ga9hdHqIy_lOOk8xXso3ZzKPrjdO2n9vYaxwwARvIan6NEgXYJnx_cUfT3_8OXssrr6dPHx7N1VpVnLctW1kvCaStVq0zVGSsYNSKBGMdK2jNENp1Qp3nLW67ZvB166knW9IkqTgbFT9PKgW4z5PkHKYrRJg3PSQ5iSWKxlfNO0XaHSA1XHkFKEQeyjHWWcBSViSU7sRElOLMktpZJcmXlxlJ_UCObvxJ-oCuHtgQDlk9cWokjaLgYYG0FnYYL9j_xv46qvRQ</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Ravanal, María Cristina</creator><creator>Alegría-Arcos, Melissa</creator><creator>Gonzalez-Nilo, Fernando Danilo</creator><creator>Eyzaguirre, Jaime</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20131201</creationdate><title>Penicillium purpurogenum produces two GH family 43 enzymes with β-xylosidase activity, one monofunctional and the other bifunctional: Biochemical and structural analyses explain the difference</title><author>Ravanal, María Cristina ; Alegría-Arcos, Melissa ; Gonzalez-Nilo, Fernando Danilo ; Eyzaguirre, Jaime</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-75a0621ab5cd74daa36deae1db30553319611bb65638c585f6eaea378b0bc0f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Amino Acid Sequence</topic><topic>Glycosyl hydrolase family 43</topic><topic>Heterologous expression</topic><topic>Homology modeling</topic><topic>Molecular Docking Simulation</topic><topic>Molecular docking simulations</topic><topic>Molecular Sequence Data</topic><topic>Penicillium - enzymology</topic><topic>Penicillium - genetics</topic><topic>Penicillium - metabolism</topic><topic>Penicillium purpurogenum</topic><topic>Protein Conformation</topic><topic>Sequence Analysis</topic><topic>Sequence Homology</topic><topic>Substrate Specificity</topic><topic>Xylosidases - biosynthesis</topic><topic>Xylosidases - chemistry</topic><topic>Xylosidases - genetics</topic><topic>Xylosidases - metabolism</topic><topic>β-d-Xylosidase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ravanal, María Cristina</creatorcontrib><creatorcontrib>Alegría-Arcos, Melissa</creatorcontrib><creatorcontrib>Gonzalez-Nilo, Fernando Danilo</creatorcontrib><creatorcontrib>Eyzaguirre, Jaime</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Archives of biochemistry and biophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ravanal, María Cristina</au><au>Alegría-Arcos, Melissa</au><au>Gonzalez-Nilo, Fernando Danilo</au><au>Eyzaguirre, Jaime</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Penicillium purpurogenum produces two GH family 43 enzymes with β-xylosidase activity, one monofunctional and the other bifunctional: Biochemical and structural analyses explain the difference</atitle><jtitle>Archives of biochemistry and biophysics</jtitle><addtitle>Arch Biochem Biophys</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>540</volume><issue>1-2</issue><spage>117</spage><epage>124</epage><pages>117-124</pages><issn>0003-9861</issn><eissn>1096-0384</eissn><abstract>•Penicillium purpurogenum secretes two GH 43 enzymes with β-xylosidase activity.•The enzymes differ in substrate specificity.•Structural and biochemical analyses explain these differences. β-Xylosidases participate in xylan biodegradation, liberating xylose from the non-reducing end of xylooligosaccharides. The fungus Penicillium purpurogenum secretes two enzymes with β-d-xylosidase activity belonging to family 43 of the glycosyl hydrolases. One of these enzymes, arabinofuranosidase 3 (ABF3), is a bifunctional α-l-arabinofuranosidase/xylobiohydrolase active on p-nitrophenyl-α-l-arabinofuranoside (pNPAra) and p-nitrophenyl-β-d-xylopyranoside (pNPXyl) with a KM of 0.65 and 12mM, respectively. The other, β-d-xylosidase 1 (XYL1), is only active on pNPXyl with a KM of 0.55mM. The xyl1 gene was expressed in Pichia pastoris, purified and characterized. The properties of both enzymes were compared in order to explain their difference in substrate specificity. Structural models for each protein were built using homology modeling tools. Molecular docking simulations were used to analyze the interactions defining the affinity of the proteins to both ligands. The structural analysis shows that active complexes (ABF3–pNPXyl, ABF3–pNPAra and XYL1–pNPXyl) possess specific interactions between substrates and catalytic residues, which are absent in the inactive complex (XYL1–pNPAra), while other interactions with non-catalytic residues are found in all complexes. pNPAra is a competitive inhibitor for XYL1 (Ki=2.5mM), confirming that pNPAra does bind to the active site but not to the catalytic residues.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>24184421</pmid><doi>10.1016/j.abb.2013.10.017</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-9861
ispartof Archives of biochemistry and biophysics, 2013-12, Vol.540 (1-2), p.117-124
issn 0003-9861
1096-0384
language eng
recordid cdi_proquest_miscellaneous_1462369457
source Elsevier ScienceDirect Journals Complete - AutoHoldings; MEDLINE
subjects Amino Acid Sequence
Glycosyl hydrolase family 43
Heterologous expression
Homology modeling
Molecular Docking Simulation
Molecular docking simulations
Molecular Sequence Data
Penicillium - enzymology
Penicillium - genetics
Penicillium - metabolism
Penicillium purpurogenum
Protein Conformation
Sequence Analysis
Sequence Homology
Substrate Specificity
Xylosidases - biosynthesis
Xylosidases - chemistry
Xylosidases - genetics
Xylosidases - metabolism
β-d-Xylosidase
title Penicillium purpurogenum produces two GH family 43 enzymes with β-xylosidase activity, one monofunctional and the other bifunctional: Biochemical and structural analyses explain the difference
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T15%3A02%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Penicillium%20purpurogenum%20produces%20two%20GH%20family%2043%20enzymes%20with%20%CE%B2-xylosidase%20activity,%20one%20monofunctional%20and%20the%20other%20bifunctional:%20Biochemical%20and%20structural%20analyses%20explain%20the%20difference&rft.jtitle=Archives%20of%20biochemistry%20and%20biophysics&rft.au=Ravanal,%20Mar%C3%ADa%20Cristina&rft.date=2013-12-01&rft.volume=540&rft.issue=1-2&rft.spage=117&rft.epage=124&rft.pages=117-124&rft.issn=0003-9861&rft.eissn=1096-0384&rft_id=info:doi/10.1016/j.abb.2013.10.017&rft_dat=%3Cproquest_cross%3E1462369457%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1462369457&rft_id=info:pmid/24184421&rft_els_id=S0003986113003378&rfr_iscdi=true