Friction between Solids and Adsorbed Fluids is Spatially Distributed at the Nanoscale

The widespread developments in the use of nanomaterials in catalysis, adsorption, and nanofluidics present significant new challenges in achieving optimal adsorbed fluid flow characteristics. Here we demonstrate, using molecular dynamics simulations of nanoconfined fluids, that at nanoscales, fluid–...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Langmuir 2013-11, Vol.29 (47), p.14519-14526
Hauptverfasser: Bhatia, Suresh K, Nicholson, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14526
container_issue 47
container_start_page 14519
container_title Langmuir
container_volume 29
creator Bhatia, Suresh K
Nicholson, David
description The widespread developments in the use of nanomaterials in catalysis, adsorption, and nanofluidics present significant new challenges in achieving optimal adsorbed fluid flow characteristics. Here we demonstrate, using molecular dynamics simulations of nanoconfined fluids, that at nanoscales, fluid–solid friction is not restricted to a sharp interface as is commonly assumed; instead it is distributed over the whole adsorbed fluid phase, and is strongest in an interfacial region that is not negligible in comparison to the system size. Our simulations yield position-dependent dynamical fluid–solid friction coefficients, and lead to a modification of conventional hydrodynamics, incorporating distributed momentum loss in the fluid due to fluid–solid interaction. The results demonstrate that the usual concepts of slip length or interfacial friction coefficient are meaningful only for uniform fluids, and lose their significance for adsorbates in nanospaces, which are intrinsically inhomogeneous. We show that static friction coefficients, based on equilibrium density distributions, follow the same spatial dependence as the dynamical coefficients. These results open up possibilities for tailoring nanomaterials and surfaces to engineer low friction pathways for adsorbed fluid flow by tuning the potential energy landscape.
doi_str_mv 10.1021/la403445j
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1462187755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1462187755</sourcerecordid><originalsourceid>FETCH-LOGICAL-a411t-41c37c08224d2074e79af506bb8372f47e751b0adbac85cbcc6242893fe2e2a3</originalsourceid><addsrcrecordid>eNptkLFOwzAQhi0EoqUw8ALICxIMAdux42SsCgWkCoaWOTo7jnDlJsV2hPr2pGppF6aT7j79d_chdE3JAyWMPjrgJOVcLE_QkApGEpEzeYqGRPI0kTxLB-gihCUhpEh5cY4GjNMs51kxRJ9Tb3W0bYOViT_GNHjeOlsFDE2Fx1VovTIVnrpu27MBz9cQLTi3wU82RG9VF_s5RBy_DH6Hpg0anLlEZzW4YK72dYQW0-fF5DWZfby8TcazBDilMeFUp1KTnDFesf5YIwuoBcmUylPJai6NFFQRqBToXGildcY4y4u0NswwSEfobhe79u13Z0IsVzZo4xw0pu1CSXnGaC6lED16v0O1b0Pwpi7X3q7Ab0pKyq3E8iCxZ2_2sZ1amepA_lnrgds9ANt3aw-NtuHI5YRknIgjBzqUy7bzTS_jn4W_gGuE0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1462187755</pqid></control><display><type>article</type><title>Friction between Solids and Adsorbed Fluids is Spatially Distributed at the Nanoscale</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Bhatia, Suresh K ; Nicholson, David</creator><creatorcontrib>Bhatia, Suresh K ; Nicholson, David</creatorcontrib><description>The widespread developments in the use of nanomaterials in catalysis, adsorption, and nanofluidics present significant new challenges in achieving optimal adsorbed fluid flow characteristics. Here we demonstrate, using molecular dynamics simulations of nanoconfined fluids, that at nanoscales, fluid–solid friction is not restricted to a sharp interface as is commonly assumed; instead it is distributed over the whole adsorbed fluid phase, and is strongest in an interfacial region that is not negligible in comparison to the system size. Our simulations yield position-dependent dynamical fluid–solid friction coefficients, and lead to a modification of conventional hydrodynamics, incorporating distributed momentum loss in the fluid due to fluid–solid interaction. The results demonstrate that the usual concepts of slip length or interfacial friction coefficient are meaningful only for uniform fluids, and lose their significance for adsorbates in nanospaces, which are intrinsically inhomogeneous. We show that static friction coefficients, based on equilibrium density distributions, follow the same spatial dependence as the dynamical coefficients. These results open up possibilities for tailoring nanomaterials and surfaces to engineer low friction pathways for adsorbed fluid flow by tuning the potential energy landscape.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la403445j</identifier><identifier>PMID: 24168469</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Adsorption ; Catalysis ; Chemistry ; Exact sciences and technology ; General and physical chemistry ; Hydrodynamics ; Methane - chemistry ; Molecular Dynamics Simulation ; Nanostructures - chemistry ; Particle Size ; Silicon Dioxide - chemistry ; Surface physical chemistry ; Surface Properties ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Langmuir, 2013-11, Vol.29 (47), p.14519-14526</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a411t-41c37c08224d2074e79af506bb8372f47e751b0adbac85cbcc6242893fe2e2a3</citedby><cites>FETCH-LOGICAL-a411t-41c37c08224d2074e79af506bb8372f47e751b0adbac85cbcc6242893fe2e2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la403445j$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la403445j$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28006405$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24168469$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhatia, Suresh K</creatorcontrib><creatorcontrib>Nicholson, David</creatorcontrib><title>Friction between Solids and Adsorbed Fluids is Spatially Distributed at the Nanoscale</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>The widespread developments in the use of nanomaterials in catalysis, adsorption, and nanofluidics present significant new challenges in achieving optimal adsorbed fluid flow characteristics. Here we demonstrate, using molecular dynamics simulations of nanoconfined fluids, that at nanoscales, fluid–solid friction is not restricted to a sharp interface as is commonly assumed; instead it is distributed over the whole adsorbed fluid phase, and is strongest in an interfacial region that is not negligible in comparison to the system size. Our simulations yield position-dependent dynamical fluid–solid friction coefficients, and lead to a modification of conventional hydrodynamics, incorporating distributed momentum loss in the fluid due to fluid–solid interaction. The results demonstrate that the usual concepts of slip length or interfacial friction coefficient are meaningful only for uniform fluids, and lose their significance for adsorbates in nanospaces, which are intrinsically inhomogeneous. We show that static friction coefficients, based on equilibrium density distributions, follow the same spatial dependence as the dynamical coefficients. These results open up possibilities for tailoring nanomaterials and surfaces to engineer low friction pathways for adsorbed fluid flow by tuning the potential energy landscape.</description><subject>Adsorption</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Hydrodynamics</subject><subject>Methane - chemistry</subject><subject>Molecular Dynamics Simulation</subject><subject>Nanostructures - chemistry</subject><subject>Particle Size</subject><subject>Silicon Dioxide - chemistry</subject><subject>Surface physical chemistry</subject><subject>Surface Properties</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkLFOwzAQhi0EoqUw8ALICxIMAdux42SsCgWkCoaWOTo7jnDlJsV2hPr2pGppF6aT7j79d_chdE3JAyWMPjrgJOVcLE_QkApGEpEzeYqGRPI0kTxLB-gihCUhpEh5cY4GjNMs51kxRJ9Tb3W0bYOViT_GNHjeOlsFDE2Fx1VovTIVnrpu27MBz9cQLTi3wU82RG9VF_s5RBy_DH6Hpg0anLlEZzW4YK72dYQW0-fF5DWZfby8TcazBDilMeFUp1KTnDFesf5YIwuoBcmUylPJai6NFFQRqBToXGildcY4y4u0NswwSEfobhe79u13Z0IsVzZo4xw0pu1CSXnGaC6lED16v0O1b0Pwpi7X3q7Ab0pKyq3E8iCxZ2_2sZ1amepA_lnrgds9ANt3aw-NtuHI5YRknIgjBzqUy7bzTS_jn4W_gGuE0A</recordid><startdate>20131126</startdate><enddate>20131126</enddate><creator>Bhatia, Suresh K</creator><creator>Nicholson, David</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20131126</creationdate><title>Friction between Solids and Adsorbed Fluids is Spatially Distributed at the Nanoscale</title><author>Bhatia, Suresh K ; Nicholson, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a411t-41c37c08224d2074e79af506bb8372f47e751b0adbac85cbcc6242893fe2e2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adsorption</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Hydrodynamics</topic><topic>Methane - chemistry</topic><topic>Molecular Dynamics Simulation</topic><topic>Nanostructures - chemistry</topic><topic>Particle Size</topic><topic>Silicon Dioxide - chemistry</topic><topic>Surface physical chemistry</topic><topic>Surface Properties</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhatia, Suresh K</creatorcontrib><creatorcontrib>Nicholson, David</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhatia, Suresh K</au><au>Nicholson, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Friction between Solids and Adsorbed Fluids is Spatially Distributed at the Nanoscale</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2013-11-26</date><risdate>2013</risdate><volume>29</volume><issue>47</issue><spage>14519</spage><epage>14526</epage><pages>14519-14526</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>The widespread developments in the use of nanomaterials in catalysis, adsorption, and nanofluidics present significant new challenges in achieving optimal adsorbed fluid flow characteristics. Here we demonstrate, using molecular dynamics simulations of nanoconfined fluids, that at nanoscales, fluid–solid friction is not restricted to a sharp interface as is commonly assumed; instead it is distributed over the whole adsorbed fluid phase, and is strongest in an interfacial region that is not negligible in comparison to the system size. Our simulations yield position-dependent dynamical fluid–solid friction coefficients, and lead to a modification of conventional hydrodynamics, incorporating distributed momentum loss in the fluid due to fluid–solid interaction. The results demonstrate that the usual concepts of slip length or interfacial friction coefficient are meaningful only for uniform fluids, and lose their significance for adsorbates in nanospaces, which are intrinsically inhomogeneous. We show that static friction coefficients, based on equilibrium density distributions, follow the same spatial dependence as the dynamical coefficients. These results open up possibilities for tailoring nanomaterials and surfaces to engineer low friction pathways for adsorbed fluid flow by tuning the potential energy landscape.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>24168469</pmid><doi>10.1021/la403445j</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2013-11, Vol.29 (47), p.14519-14526
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_1462187755
source MEDLINE; American Chemical Society Journals
subjects Adsorption
Catalysis
Chemistry
Exact sciences and technology
General and physical chemistry
Hydrodynamics
Methane - chemistry
Molecular Dynamics Simulation
Nanostructures - chemistry
Particle Size
Silicon Dioxide - chemistry
Surface physical chemistry
Surface Properties
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
title Friction between Solids and Adsorbed Fluids is Spatially Distributed at the Nanoscale
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A01%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Friction%20between%20Solids%20and%20Adsorbed%20Fluids%20is%20Spatially%20Distributed%20at%20the%20Nanoscale&rft.jtitle=Langmuir&rft.au=Bhatia,%20Suresh%20K&rft.date=2013-11-26&rft.volume=29&rft.issue=47&rft.spage=14519&rft.epage=14526&rft.pages=14519-14526&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la403445j&rft_dat=%3Cproquest_cross%3E1462187755%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1462187755&rft_id=info:pmid/24168469&rfr_iscdi=true