Friction between Solids and Adsorbed Fluids is Spatially Distributed at the Nanoscale
The widespread developments in the use of nanomaterials in catalysis, adsorption, and nanofluidics present significant new challenges in achieving optimal adsorbed fluid flow characteristics. Here we demonstrate, using molecular dynamics simulations of nanoconfined fluids, that at nanoscales, fluid–...
Gespeichert in:
Veröffentlicht in: | Langmuir 2013-11, Vol.29 (47), p.14519-14526 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14526 |
---|---|
container_issue | 47 |
container_start_page | 14519 |
container_title | Langmuir |
container_volume | 29 |
creator | Bhatia, Suresh K Nicholson, David |
description | The widespread developments in the use of nanomaterials in catalysis, adsorption, and nanofluidics present significant new challenges in achieving optimal adsorbed fluid flow characteristics. Here we demonstrate, using molecular dynamics simulations of nanoconfined fluids, that at nanoscales, fluid–solid friction is not restricted to a sharp interface as is commonly assumed; instead it is distributed over the whole adsorbed fluid phase, and is strongest in an interfacial region that is not negligible in comparison to the system size. Our simulations yield position-dependent dynamical fluid–solid friction coefficients, and lead to a modification of conventional hydrodynamics, incorporating distributed momentum loss in the fluid due to fluid–solid interaction. The results demonstrate that the usual concepts of slip length or interfacial friction coefficient are meaningful only for uniform fluids, and lose their significance for adsorbates in nanospaces, which are intrinsically inhomogeneous. We show that static friction coefficients, based on equilibrium density distributions, follow the same spatial dependence as the dynamical coefficients. These results open up possibilities for tailoring nanomaterials and surfaces to engineer low friction pathways for adsorbed fluid flow by tuning the potential energy landscape. |
doi_str_mv | 10.1021/la403445j |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1462187755</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1462187755</sourcerecordid><originalsourceid>FETCH-LOGICAL-a411t-41c37c08224d2074e79af506bb8372f47e751b0adbac85cbcc6242893fe2e2a3</originalsourceid><addsrcrecordid>eNptkLFOwzAQhi0EoqUw8ALICxIMAdux42SsCgWkCoaWOTo7jnDlJsV2hPr2pGppF6aT7j79d_chdE3JAyWMPjrgJOVcLE_QkApGEpEzeYqGRPI0kTxLB-gihCUhpEh5cY4GjNMs51kxRJ9Tb3W0bYOViT_GNHjeOlsFDE2Fx1VovTIVnrpu27MBz9cQLTi3wU82RG9VF_s5RBy_DH6Hpg0anLlEZzW4YK72dYQW0-fF5DWZfby8TcazBDilMeFUp1KTnDFesf5YIwuoBcmUylPJai6NFFQRqBToXGildcY4y4u0NswwSEfobhe79u13Z0IsVzZo4xw0pu1CSXnGaC6lED16v0O1b0Pwpi7X3q7Ab0pKyq3E8iCxZ2_2sZ1amepA_lnrgds9ANt3aw-NtuHI5YRknIgjBzqUy7bzTS_jn4W_gGuE0A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1462187755</pqid></control><display><type>article</type><title>Friction between Solids and Adsorbed Fluids is Spatially Distributed at the Nanoscale</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Bhatia, Suresh K ; Nicholson, David</creator><creatorcontrib>Bhatia, Suresh K ; Nicholson, David</creatorcontrib><description>The widespread developments in the use of nanomaterials in catalysis, adsorption, and nanofluidics present significant new challenges in achieving optimal adsorbed fluid flow characteristics. Here we demonstrate, using molecular dynamics simulations of nanoconfined fluids, that at nanoscales, fluid–solid friction is not restricted to a sharp interface as is commonly assumed; instead it is distributed over the whole adsorbed fluid phase, and is strongest in an interfacial region that is not negligible in comparison to the system size. Our simulations yield position-dependent dynamical fluid–solid friction coefficients, and lead to a modification of conventional hydrodynamics, incorporating distributed momentum loss in the fluid due to fluid–solid interaction. The results demonstrate that the usual concepts of slip length or interfacial friction coefficient are meaningful only for uniform fluids, and lose their significance for adsorbates in nanospaces, which are intrinsically inhomogeneous. We show that static friction coefficients, based on equilibrium density distributions, follow the same spatial dependence as the dynamical coefficients. These results open up possibilities for tailoring nanomaterials and surfaces to engineer low friction pathways for adsorbed fluid flow by tuning the potential energy landscape.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la403445j</identifier><identifier>PMID: 24168469</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Adsorption ; Catalysis ; Chemistry ; Exact sciences and technology ; General and physical chemistry ; Hydrodynamics ; Methane - chemistry ; Molecular Dynamics Simulation ; Nanostructures - chemistry ; Particle Size ; Silicon Dioxide - chemistry ; Surface physical chemistry ; Surface Properties ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><ispartof>Langmuir, 2013-11, Vol.29 (47), p.14519-14526</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a411t-41c37c08224d2074e79af506bb8372f47e751b0adbac85cbcc6242893fe2e2a3</citedby><cites>FETCH-LOGICAL-a411t-41c37c08224d2074e79af506bb8372f47e751b0adbac85cbcc6242893fe2e2a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/la403445j$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/la403445j$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28006405$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24168469$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhatia, Suresh K</creatorcontrib><creatorcontrib>Nicholson, David</creatorcontrib><title>Friction between Solids and Adsorbed Fluids is Spatially Distributed at the Nanoscale</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>The widespread developments in the use of nanomaterials in catalysis, adsorption, and nanofluidics present significant new challenges in achieving optimal adsorbed fluid flow characteristics. Here we demonstrate, using molecular dynamics simulations of nanoconfined fluids, that at nanoscales, fluid–solid friction is not restricted to a sharp interface as is commonly assumed; instead it is distributed over the whole adsorbed fluid phase, and is strongest in an interfacial region that is not negligible in comparison to the system size. Our simulations yield position-dependent dynamical fluid–solid friction coefficients, and lead to a modification of conventional hydrodynamics, incorporating distributed momentum loss in the fluid due to fluid–solid interaction. The results demonstrate that the usual concepts of slip length or interfacial friction coefficient are meaningful only for uniform fluids, and lose their significance for adsorbates in nanospaces, which are intrinsically inhomogeneous. We show that static friction coefficients, based on equilibrium density distributions, follow the same spatial dependence as the dynamical coefficients. These results open up possibilities for tailoring nanomaterials and surfaces to engineer low friction pathways for adsorbed fluid flow by tuning the potential energy landscape.</description><subject>Adsorption</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Hydrodynamics</subject><subject>Methane - chemistry</subject><subject>Molecular Dynamics Simulation</subject><subject>Nanostructures - chemistry</subject><subject>Particle Size</subject><subject>Silicon Dioxide - chemistry</subject><subject>Surface physical chemistry</subject><subject>Surface Properties</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkLFOwzAQhi0EoqUw8ALICxIMAdux42SsCgWkCoaWOTo7jnDlJsV2hPr2pGppF6aT7j79d_chdE3JAyWMPjrgJOVcLE_QkApGEpEzeYqGRPI0kTxLB-gihCUhpEh5cY4GjNMs51kxRJ9Tb3W0bYOViT_GNHjeOlsFDE2Fx1VovTIVnrpu27MBz9cQLTi3wU82RG9VF_s5RBy_DH6Hpg0anLlEZzW4YK72dYQW0-fF5DWZfby8TcazBDilMeFUp1KTnDFesf5YIwuoBcmUylPJai6NFFQRqBToXGildcY4y4u0NswwSEfobhe79u13Z0IsVzZo4xw0pu1CSXnGaC6lED16v0O1b0Pwpi7X3q7Ab0pKyq3E8iCxZ2_2sZ1amepA_lnrgds9ANt3aw-NtuHI5YRknIgjBzqUy7bzTS_jn4W_gGuE0A</recordid><startdate>20131126</startdate><enddate>20131126</enddate><creator>Bhatia, Suresh K</creator><creator>Nicholson, David</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20131126</creationdate><title>Friction between Solids and Adsorbed Fluids is Spatially Distributed at the Nanoscale</title><author>Bhatia, Suresh K ; Nicholson, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a411t-41c37c08224d2074e79af506bb8372f47e751b0adbac85cbcc6242893fe2e2a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Adsorption</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Hydrodynamics</topic><topic>Methane - chemistry</topic><topic>Molecular Dynamics Simulation</topic><topic>Nanostructures - chemistry</topic><topic>Particle Size</topic><topic>Silicon Dioxide - chemistry</topic><topic>Surface physical chemistry</topic><topic>Surface Properties</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhatia, Suresh K</creatorcontrib><creatorcontrib>Nicholson, David</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhatia, Suresh K</au><au>Nicholson, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Friction between Solids and Adsorbed Fluids is Spatially Distributed at the Nanoscale</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2013-11-26</date><risdate>2013</risdate><volume>29</volume><issue>47</issue><spage>14519</spage><epage>14526</epage><pages>14519-14526</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>The widespread developments in the use of nanomaterials in catalysis, adsorption, and nanofluidics present significant new challenges in achieving optimal adsorbed fluid flow characteristics. Here we demonstrate, using molecular dynamics simulations of nanoconfined fluids, that at nanoscales, fluid–solid friction is not restricted to a sharp interface as is commonly assumed; instead it is distributed over the whole adsorbed fluid phase, and is strongest in an interfacial region that is not negligible in comparison to the system size. Our simulations yield position-dependent dynamical fluid–solid friction coefficients, and lead to a modification of conventional hydrodynamics, incorporating distributed momentum loss in the fluid due to fluid–solid interaction. The results demonstrate that the usual concepts of slip length or interfacial friction coefficient are meaningful only for uniform fluids, and lose their significance for adsorbates in nanospaces, which are intrinsically inhomogeneous. We show that static friction coefficients, based on equilibrium density distributions, follow the same spatial dependence as the dynamical coefficients. These results open up possibilities for tailoring nanomaterials and surfaces to engineer low friction pathways for adsorbed fluid flow by tuning the potential energy landscape.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>24168469</pmid><doi>10.1021/la403445j</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0743-7463 |
ispartof | Langmuir, 2013-11, Vol.29 (47), p.14519-14526 |
issn | 0743-7463 1520-5827 |
language | eng |
recordid | cdi_proquest_miscellaneous_1462187755 |
source | MEDLINE; American Chemical Society Journals |
subjects | Adsorption Catalysis Chemistry Exact sciences and technology General and physical chemistry Hydrodynamics Methane - chemistry Molecular Dynamics Simulation Nanostructures - chemistry Particle Size Silicon Dioxide - chemistry Surface physical chemistry Surface Properties Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry |
title | Friction between Solids and Adsorbed Fluids is Spatially Distributed at the Nanoscale |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A01%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Friction%20between%20Solids%20and%20Adsorbed%20Fluids%20is%20Spatially%20Distributed%20at%20the%20Nanoscale&rft.jtitle=Langmuir&rft.au=Bhatia,%20Suresh%20K&rft.date=2013-11-26&rft.volume=29&rft.issue=47&rft.spage=14519&rft.epage=14526&rft.pages=14519-14526&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la403445j&rft_dat=%3Cproquest_cross%3E1462187755%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1462187755&rft_id=info:pmid/24168469&rfr_iscdi=true |