Effects of Organic Loading, Influent Concentration, and Feed Time on Biohydrogen Production in a Mechanically Stirred AnSBBR Treating Sucrose-Based Wastewater
An anaerobic sequencing batch biofilm reactor (AnSBBR—total volume 7.5 L; liquid volume 3.6 L; treated volume per cycle 1.5 L) treated sucrose-based wastewater to produce biohydrogen (at 30 °C). Different applied volumetric organic loads (AVOL of 9.0, 12.0, 13.5, 18.0, and 27.0 kg COD m⁻³ day⁻¹), wh...
Gespeichert in:
Veröffentlicht in: | Applied biochemistry and biotechnology 2013-12, Vol.171 (7), p.1832-1854 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1854 |
---|---|
container_issue | 7 |
container_start_page | 1832 |
container_title | Applied biochemistry and biotechnology |
container_volume | 171 |
creator | Manssouri, M Rodrigues, J. A. D Ratusznei, S. M Zaiat, M |
description | An anaerobic sequencing batch biofilm reactor (AnSBBR—total volume 7.5 L; liquid volume 3.6 L; treated volume per cycle 1.5 L) treated sucrose-based wastewater to produce biohydrogen (at 30 °C). Different applied volumetric organic loads (AVOL of 9.0, 12.0, 13.5, 18.0, and 27.0 kg COD m⁻³ day⁻¹), which were varied according to the influent concentration (3,600 and 5,400 mg COD L⁻¹) and cycle length (4, 3, and 2 h), have been used to assess the following parameters: productivity and yield of biohydrogen per applied and removed load, reactor stability, and efficiency. The removed organic matter (COD) remained stable and close to 18 % and carbohydrates (sucrose) uptake rate remained between 83 and 97 % during operation. The decrease in removal performance of the reactor with increasing AVOL, by increasing the influent concentration (at constant cycle length) and decreasing the cycle lengths (at constant influent concentrations), resulted in lower conversion efficiencies. Under all conditions, when organic load increased there was a predominance of acetic, propionic, and butyric acid as well as ethanol. The highest concentration of biohydrogen in the biogas (24–25 %) was achieved at conditions with AVOL of 12.0 and 13.5 kg COD m⁻³ day⁻¹, the highest daily production rate (0.139 mol H₂ day⁻¹) was achieved at AVOL of 18.0 kg COD m⁻³ day⁻¹, and the highest production yields per removed and applied load were 2.83 and 3.04 mol H₂ kg SUC⁻¹, respectively, at AVOL of 13.5 kg COD m⁻³ day⁻¹. The results indicated that the best productivity tends to occur at higher organic loads, as this parameter involves the “biochemical generation” of biogas, and the best yield tends to occur at lower and/or intermediate organic loads, as this parameter involves “biochemical consumption” of the substrate. |
doi_str_mv | 10.1007/s12010-013-0457-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1461864957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1461864957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-d871187ea10fe137da339376c522b1a995edf85e97b522d0edf0ebb2954b951b3</originalsourceid><addsrcrecordid>eNp9kc9u1DAQxiMEokvhAbiAJYTEoYEZJ17bx-6qhUqLititOEZOMklTZe3WToTyMjwrjnb5Iw6cRvb8vm_G_pLkJcJ7BJAfAnJASAGzFHIh0-lRskAhdApc4-NkAVxmKedKnyTPQrgDQK6EfJqc8ExrLXNYJD8umoaqITDXsGvfGttVbONM3dn2jF3Zph_JDmztbBWrN0Pn7BkztmaXRDXbdXtizrJV526n2ruWLPviXT1WM8g6ywz7TNXtbGv6fmLbofM-Cs_tdrX6ynaeoqVt2XasvAuUrkyI3W8mDPTdDOSfJ08a0wd6caynyc3lxW79Kd1cf7xan2_SKufLIa2VRFSSDEJDmMnaZJnO5LISnJdotBZUN0qQlmW8qSGegMqSa5GXWmCZnSbvDr733j2MFIZi34WK-t5YcmMoMF-iWuZayIi--Qe9c6O3cbuZApUphDxSeKDmdwVPTXHvu73xU4FQzOEVh_CKGF4xh1dMUfPq6DyWe6p_K36lFYG3R8CE-J-NN7bqwh9OgUCpVOT4gQuxZVvyf634n-mvD6LGuMK0PhrfbCOUA4DgS-TZT5NGu4o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1460838104</pqid></control><display><type>article</type><title>Effects of Organic Loading, Influent Concentration, and Feed Time on Biohydrogen Production in a Mechanically Stirred AnSBBR Treating Sucrose-Based Wastewater</title><source>MEDLINE</source><source>SpringerLink_现刊</source><creator>Manssouri, M ; Rodrigues, J. A. D ; Ratusznei, S. M ; Zaiat, M</creator><creatorcontrib>Manssouri, M ; Rodrigues, J. A. D ; Ratusznei, S. M ; Zaiat, M</creatorcontrib><description>An anaerobic sequencing batch biofilm reactor (AnSBBR—total volume 7.5 L; liquid volume 3.6 L; treated volume per cycle 1.5 L) treated sucrose-based wastewater to produce biohydrogen (at 30 °C). Different applied volumetric organic loads (AVOL of 9.0, 12.0, 13.5, 18.0, and 27.0 kg COD m⁻³ day⁻¹), which were varied according to the influent concentration (3,600 and 5,400 mg COD L⁻¹) and cycle length (4, 3, and 2 h), have been used to assess the following parameters: productivity and yield of biohydrogen per applied and removed load, reactor stability, and efficiency. The removed organic matter (COD) remained stable and close to 18 % and carbohydrates (sucrose) uptake rate remained between 83 and 97 % during operation. The decrease in removal performance of the reactor with increasing AVOL, by increasing the influent concentration (at constant cycle length) and decreasing the cycle lengths (at constant influent concentrations), resulted in lower conversion efficiencies. Under all conditions, when organic load increased there was a predominance of acetic, propionic, and butyric acid as well as ethanol. The highest concentration of biohydrogen in the biogas (24–25 %) was achieved at conditions with AVOL of 12.0 and 13.5 kg COD m⁻³ day⁻¹, the highest daily production rate (0.139 mol H₂ day⁻¹) was achieved at AVOL of 18.0 kg COD m⁻³ day⁻¹, and the highest production yields per removed and applied load were 2.83 and 3.04 mol H₂ kg SUC⁻¹, respectively, at AVOL of 13.5 kg COD m⁻³ day⁻¹. The results indicated that the best productivity tends to occur at higher organic loads, as this parameter involves the “biochemical generation” of biogas, and the best yield tends to occur at lower and/or intermediate organic loads, as this parameter involves “biochemical consumption” of the substrate.</description><identifier>ISSN: 0273-2289</identifier><identifier>EISSN: 1559-0291</identifier><identifier>DOI: 10.1007/s12010-013-0457-y</identifier><identifier>PMID: 23999740</identifier><identifier>CODEN: ABIBDL</identifier><language>eng</language><publisher>Boston: Springer-Verlag</publisher><subject>Anaerobiosis ; Biochemistry ; Biofilms ; Biogas ; Biohydrogen ; Biological and medical sciences ; Bioreactors ; Bioreactors - microbiology ; Biotechnology ; butyric acid ; Carbohydrates ; chemical oxygen demand ; Chemistry ; Chemistry and Materials Science ; Ethanol ; Fundamental and applied biological sciences. Psychology ; Hydrogen ; Hydrogen - metabolism ; hydrogen production ; Mechanical Phenomena ; Membrane reactors ; Organic Chemicals - metabolism ; Organic loading ; Organic matter ; Reactors ; Sucrose ; Sucrose - metabolism ; Time Factors ; Waste Water - microbiology ; wastewater ; Water treatment</subject><ispartof>Applied biochemistry and biotechnology, 2013-12, Vol.171 (7), p.1832-1854</ispartof><rights>Springer Science+Business Media New York 2013</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-d871187ea10fe137da339376c522b1a995edf85e97b522d0edf0ebb2954b951b3</citedby><cites>FETCH-LOGICAL-c426t-d871187ea10fe137da339376c522b1a995edf85e97b522d0edf0ebb2954b951b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12010-013-0457-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12010-013-0457-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28051788$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23999740$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Manssouri, M</creatorcontrib><creatorcontrib>Rodrigues, J. A. D</creatorcontrib><creatorcontrib>Ratusznei, S. M</creatorcontrib><creatorcontrib>Zaiat, M</creatorcontrib><title>Effects of Organic Loading, Influent Concentration, and Feed Time on Biohydrogen Production in a Mechanically Stirred AnSBBR Treating Sucrose-Based Wastewater</title><title>Applied biochemistry and biotechnology</title><addtitle>Appl Biochem Biotechnol</addtitle><addtitle>Appl Biochem Biotechnol</addtitle><description>An anaerobic sequencing batch biofilm reactor (AnSBBR—total volume 7.5 L; liquid volume 3.6 L; treated volume per cycle 1.5 L) treated sucrose-based wastewater to produce biohydrogen (at 30 °C). Different applied volumetric organic loads (AVOL of 9.0, 12.0, 13.5, 18.0, and 27.0 kg COD m⁻³ day⁻¹), which were varied according to the influent concentration (3,600 and 5,400 mg COD L⁻¹) and cycle length (4, 3, and 2 h), have been used to assess the following parameters: productivity and yield of biohydrogen per applied and removed load, reactor stability, and efficiency. The removed organic matter (COD) remained stable and close to 18 % and carbohydrates (sucrose) uptake rate remained between 83 and 97 % during operation. The decrease in removal performance of the reactor with increasing AVOL, by increasing the influent concentration (at constant cycle length) and decreasing the cycle lengths (at constant influent concentrations), resulted in lower conversion efficiencies. Under all conditions, when organic load increased there was a predominance of acetic, propionic, and butyric acid as well as ethanol. The highest concentration of biohydrogen in the biogas (24–25 %) was achieved at conditions with AVOL of 12.0 and 13.5 kg COD m⁻³ day⁻¹, the highest daily production rate (0.139 mol H₂ day⁻¹) was achieved at AVOL of 18.0 kg COD m⁻³ day⁻¹, and the highest production yields per removed and applied load were 2.83 and 3.04 mol H₂ kg SUC⁻¹, respectively, at AVOL of 13.5 kg COD m⁻³ day⁻¹. The results indicated that the best productivity tends to occur at higher organic loads, as this parameter involves the “biochemical generation” of biogas, and the best yield tends to occur at lower and/or intermediate organic loads, as this parameter involves “biochemical consumption” of the substrate.</description><subject>Anaerobiosis</subject><subject>Biochemistry</subject><subject>Biofilms</subject><subject>Biogas</subject><subject>Biohydrogen</subject><subject>Biological and medical sciences</subject><subject>Bioreactors</subject><subject>Bioreactors - microbiology</subject><subject>Biotechnology</subject><subject>butyric acid</subject><subject>Carbohydrates</subject><subject>chemical oxygen demand</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Ethanol</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Hydrogen</subject><subject>Hydrogen - metabolism</subject><subject>hydrogen production</subject><subject>Mechanical Phenomena</subject><subject>Membrane reactors</subject><subject>Organic Chemicals - metabolism</subject><subject>Organic loading</subject><subject>Organic matter</subject><subject>Reactors</subject><subject>Sucrose</subject><subject>Sucrose - metabolism</subject><subject>Time Factors</subject><subject>Waste Water - microbiology</subject><subject>wastewater</subject><subject>Water treatment</subject><issn>0273-2289</issn><issn>1559-0291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kc9u1DAQxiMEokvhAbiAJYTEoYEZJ17bx-6qhUqLititOEZOMklTZe3WToTyMjwrjnb5Iw6cRvb8vm_G_pLkJcJ7BJAfAnJASAGzFHIh0-lRskAhdApc4-NkAVxmKedKnyTPQrgDQK6EfJqc8ExrLXNYJD8umoaqITDXsGvfGttVbONM3dn2jF3Zph_JDmztbBWrN0Pn7BkztmaXRDXbdXtizrJV526n2ruWLPviXT1WM8g6ywz7TNXtbGv6fmLbofM-Cs_tdrX6ynaeoqVt2XasvAuUrkyI3W8mDPTdDOSfJ08a0wd6caynyc3lxW79Kd1cf7xan2_SKufLIa2VRFSSDEJDmMnaZJnO5LISnJdotBZUN0qQlmW8qSGegMqSa5GXWmCZnSbvDr733j2MFIZi34WK-t5YcmMoMF-iWuZayIi--Qe9c6O3cbuZApUphDxSeKDmdwVPTXHvu73xU4FQzOEVh_CKGF4xh1dMUfPq6DyWe6p_K36lFYG3R8CE-J-NN7bqwh9OgUCpVOT4gQuxZVvyf634n-mvD6LGuMK0PhrfbCOUA4DgS-TZT5NGu4o</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Manssouri, M</creator><creator>Rodrigues, J. A. D</creator><creator>Ratusznei, S. M</creator><creator>Zaiat, M</creator><general>Springer-Verlag</general><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20131201</creationdate><title>Effects of Organic Loading, Influent Concentration, and Feed Time on Biohydrogen Production in a Mechanically Stirred AnSBBR Treating Sucrose-Based Wastewater</title><author>Manssouri, M ; Rodrigues, J. A. D ; Ratusznei, S. M ; Zaiat, M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-d871187ea10fe137da339376c522b1a995edf85e97b522d0edf0ebb2954b951b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Anaerobiosis</topic><topic>Biochemistry</topic><topic>Biofilms</topic><topic>Biogas</topic><topic>Biohydrogen</topic><topic>Biological and medical sciences</topic><topic>Bioreactors</topic><topic>Bioreactors - microbiology</topic><topic>Biotechnology</topic><topic>butyric acid</topic><topic>Carbohydrates</topic><topic>chemical oxygen demand</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Ethanol</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Hydrogen</topic><topic>Hydrogen - metabolism</topic><topic>hydrogen production</topic><topic>Mechanical Phenomena</topic><topic>Membrane reactors</topic><topic>Organic Chemicals - metabolism</topic><topic>Organic loading</topic><topic>Organic matter</topic><topic>Reactors</topic><topic>Sucrose</topic><topic>Sucrose - metabolism</topic><topic>Time Factors</topic><topic>Waste Water - microbiology</topic><topic>wastewater</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manssouri, M</creatorcontrib><creatorcontrib>Rodrigues, J. A. D</creatorcontrib><creatorcontrib>Ratusznei, S. M</creatorcontrib><creatorcontrib>Zaiat, M</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Applied biochemistry and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manssouri, M</au><au>Rodrigues, J. A. D</au><au>Ratusznei, S. M</au><au>Zaiat, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Organic Loading, Influent Concentration, and Feed Time on Biohydrogen Production in a Mechanically Stirred AnSBBR Treating Sucrose-Based Wastewater</atitle><jtitle>Applied biochemistry and biotechnology</jtitle><stitle>Appl Biochem Biotechnol</stitle><addtitle>Appl Biochem Biotechnol</addtitle><date>2013-12-01</date><risdate>2013</risdate><volume>171</volume><issue>7</issue><spage>1832</spage><epage>1854</epage><pages>1832-1854</pages><issn>0273-2289</issn><eissn>1559-0291</eissn><coden>ABIBDL</coden><abstract>An anaerobic sequencing batch biofilm reactor (AnSBBR—total volume 7.5 L; liquid volume 3.6 L; treated volume per cycle 1.5 L) treated sucrose-based wastewater to produce biohydrogen (at 30 °C). Different applied volumetric organic loads (AVOL of 9.0, 12.0, 13.5, 18.0, and 27.0 kg COD m⁻³ day⁻¹), which were varied according to the influent concentration (3,600 and 5,400 mg COD L⁻¹) and cycle length (4, 3, and 2 h), have been used to assess the following parameters: productivity and yield of biohydrogen per applied and removed load, reactor stability, and efficiency. The removed organic matter (COD) remained stable and close to 18 % and carbohydrates (sucrose) uptake rate remained between 83 and 97 % during operation. The decrease in removal performance of the reactor with increasing AVOL, by increasing the influent concentration (at constant cycle length) and decreasing the cycle lengths (at constant influent concentrations), resulted in lower conversion efficiencies. Under all conditions, when organic load increased there was a predominance of acetic, propionic, and butyric acid as well as ethanol. The highest concentration of biohydrogen in the biogas (24–25 %) was achieved at conditions with AVOL of 12.0 and 13.5 kg COD m⁻³ day⁻¹, the highest daily production rate (0.139 mol H₂ day⁻¹) was achieved at AVOL of 18.0 kg COD m⁻³ day⁻¹, and the highest production yields per removed and applied load were 2.83 and 3.04 mol H₂ kg SUC⁻¹, respectively, at AVOL of 13.5 kg COD m⁻³ day⁻¹. The results indicated that the best productivity tends to occur at higher organic loads, as this parameter involves the “biochemical generation” of biogas, and the best yield tends to occur at lower and/or intermediate organic loads, as this parameter involves “biochemical consumption” of the substrate.</abstract><cop>Boston</cop><pub>Springer-Verlag</pub><pmid>23999740</pmid><doi>10.1007/s12010-013-0457-y</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0273-2289 |
ispartof | Applied biochemistry and biotechnology, 2013-12, Vol.171 (7), p.1832-1854 |
issn | 0273-2289 1559-0291 |
language | eng |
recordid | cdi_proquest_miscellaneous_1461864957 |
source | MEDLINE; SpringerLink_现刊 |
subjects | Anaerobiosis Biochemistry Biofilms Biogas Biohydrogen Biological and medical sciences Bioreactors Bioreactors - microbiology Biotechnology butyric acid Carbohydrates chemical oxygen demand Chemistry Chemistry and Materials Science Ethanol Fundamental and applied biological sciences. Psychology Hydrogen Hydrogen - metabolism hydrogen production Mechanical Phenomena Membrane reactors Organic Chemicals - metabolism Organic loading Organic matter Reactors Sucrose Sucrose - metabolism Time Factors Waste Water - microbiology wastewater Water treatment |
title | Effects of Organic Loading, Influent Concentration, and Feed Time on Biohydrogen Production in a Mechanically Stirred AnSBBR Treating Sucrose-Based Wastewater |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T16%3A01%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Organic%20Loading,%20Influent%20Concentration,%20and%20Feed%20Time%20on%20Biohydrogen%20Production%20in%20a%20Mechanically%20Stirred%20AnSBBR%20Treating%20Sucrose-Based%20Wastewater&rft.jtitle=Applied%20biochemistry%20and%20biotechnology&rft.au=Manssouri,%20M&rft.date=2013-12-01&rft.volume=171&rft.issue=7&rft.spage=1832&rft.epage=1854&rft.pages=1832-1854&rft.issn=0273-2289&rft.eissn=1559-0291&rft.coden=ABIBDL&rft_id=info:doi/10.1007/s12010-013-0457-y&rft_dat=%3Cproquest_cross%3E1461864957%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1460838104&rft_id=info:pmid/23999740&rfr_iscdi=true |