Credibility theory based on trimming

The classical credibility theory proposed by Bühlmann has been widely used in general insurance applications. In this paper we propose a credibility theory via truncation of the loss data, or the trimmed mean. The proposed framework contains the classical credibility theory as a special case and is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Insurance, mathematics & economics mathematics & economics, 2013-07, Vol.53 (1), p.36-47
Hauptverfasser: Kim, Joseph H.T., Jeon, Yongho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 47
container_issue 1
container_start_page 36
container_title Insurance, mathematics & economics
container_volume 53
creator Kim, Joseph H.T.
Jeon, Yongho
description The classical credibility theory proposed by Bühlmann has been widely used in general insurance applications. In this paper we propose a credibility theory via truncation of the loss data, or the trimmed mean. The proposed framework contains the classical credibility theory as a special case and is based on the idea of varying the trimming threshold level to investigate the sensitivity of the credibility premium. After showing that the trimmed mean is not a coherent risk measure, we investigate some related asymptotic properties of the structural parameters in credibility. Later a numerical illustration shows that the proposed credibility models can successfully capture the tail risk of the underlying loss model, thus providing a better landscape of the overall risk that insurers assume. •In this paper we propose a credibility theory via truncation of the loss data.•The proposed framework contains the classical credibility theory as a special case.•It is shown that the trimmed mean is not a coherent risk measure.•Some related asymptotic properties are established.•A numerical illustration is provided.
doi_str_mv 10.1016/j.insmatheco.2013.03.012
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1461641311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167668713000541</els_id><sourcerecordid>3025212171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-44d418a0b9fa06522bb5734dc796cfea04763bb51fb5fe472d19ecb52dfe17c3</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-h4IevLRmkjRpj7r4Dxa87D2k6VRT2mZNusJ-e7OsIHgRBgaG33vMe4RkQAugIO_6wk1xNPMHWl8wCrygaYCdkAVUiudlXdanZJFQlUtZqXNyEWNPKYVaqgW5WQVsXeMGN--zZOLDPmtMxDbzUzYHN45uer8kZ50ZIl797CXZPD1uVi_5-u35dXW_zq0QfM6FaAVUhjZ1Z6gsGWuaUnHRWlVL26GhQkmebtA1ZYdCsRZqtE3J2g5BWb4kt0fbbfCfO4yzHl20OAxmQr-LGoQEKYADJPT6D9r7XZjSc4milRSC8jpR1ZGywccYsNPblMiEvQaqD-3pXv-2pw_taZoGWJI-HKWY8n45DDpah5NNZQW0s269-9_kG_oBfGM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1408644039</pqid></control><display><type>article</type><title>Credibility theory based on trimming</title><source>Access via ScienceDirect (Elsevier)</source><creator>Kim, Joseph H.T. ; Jeon, Yongho</creator><creatorcontrib>Kim, Joseph H.T. ; Jeon, Yongho</creatorcontrib><description>The classical credibility theory proposed by Bühlmann has been widely used in general insurance applications. In this paper we propose a credibility theory via truncation of the loss data, or the trimmed mean. The proposed framework contains the classical credibility theory as a special case and is based on the idea of varying the trimming threshold level to investigate the sensitivity of the credibility premium. After showing that the trimmed mean is not a coherent risk measure, we investigate some related asymptotic properties of the structural parameters in credibility. Later a numerical illustration shows that the proposed credibility models can successfully capture the tail risk of the underlying loss model, thus providing a better landscape of the overall risk that insurers assume. •In this paper we propose a credibility theory via truncation of the loss data.•The proposed framework contains the classical credibility theory as a special case.•It is shown that the trimmed mean is not a coherent risk measure.•Some related asymptotic properties are established.•A numerical illustration is provided.</description><identifier>ISSN: 0167-6687</identifier><identifier>EISSN: 1873-5959</identifier><identifier>DOI: 10.1016/j.insmatheco.2013.03.012</identifier><identifier>CODEN: IMECDX</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Actuarial science ; Asymptotic methods ; Credibility ; Economic models ; Financial risks ; Insurance ; Insurance applications ; Insurance premiums ; L-estimator ; Losses ; Numerical analysis ; Risk assessment ; Risk measure ; Risk theory ; Statistical models ; Structural analysis ; Studies ; Trimmed mean</subject><ispartof>Insurance, mathematics &amp; economics, 2013-07, Vol.53 (1), p.36-47</ispartof><rights>2013 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jul 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-44d418a0b9fa06522bb5734dc796cfea04763bb51fb5fe472d19ecb52dfe17c3</citedby><cites>FETCH-LOGICAL-c443t-44d418a0b9fa06522bb5734dc796cfea04763bb51fb5fe472d19ecb52dfe17c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.insmatheco.2013.03.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27929,27930,46000</link.rule.ids></links><search><creatorcontrib>Kim, Joseph H.T.</creatorcontrib><creatorcontrib>Jeon, Yongho</creatorcontrib><title>Credibility theory based on trimming</title><title>Insurance, mathematics &amp; economics</title><description>The classical credibility theory proposed by Bühlmann has been widely used in general insurance applications. In this paper we propose a credibility theory via truncation of the loss data, or the trimmed mean. The proposed framework contains the classical credibility theory as a special case and is based on the idea of varying the trimming threshold level to investigate the sensitivity of the credibility premium. After showing that the trimmed mean is not a coherent risk measure, we investigate some related asymptotic properties of the structural parameters in credibility. Later a numerical illustration shows that the proposed credibility models can successfully capture the tail risk of the underlying loss model, thus providing a better landscape of the overall risk that insurers assume. •In this paper we propose a credibility theory via truncation of the loss data.•The proposed framework contains the classical credibility theory as a special case.•It is shown that the trimmed mean is not a coherent risk measure.•Some related asymptotic properties are established.•A numerical illustration is provided.</description><subject>Actuarial science</subject><subject>Asymptotic methods</subject><subject>Credibility</subject><subject>Economic models</subject><subject>Financial risks</subject><subject>Insurance</subject><subject>Insurance applications</subject><subject>Insurance premiums</subject><subject>L-estimator</subject><subject>Losses</subject><subject>Numerical analysis</subject><subject>Risk assessment</subject><subject>Risk measure</subject><subject>Risk theory</subject><subject>Statistical models</subject><subject>Structural analysis</subject><subject>Studies</subject><subject>Trimmed mean</subject><issn>0167-6687</issn><issn>1873-5959</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-h4IevLRmkjRpj7r4Dxa87D2k6VRT2mZNusJ-e7OsIHgRBgaG33vMe4RkQAugIO_6wk1xNPMHWl8wCrygaYCdkAVUiudlXdanZJFQlUtZqXNyEWNPKYVaqgW5WQVsXeMGN--zZOLDPmtMxDbzUzYHN45uer8kZ50ZIl797CXZPD1uVi_5-u35dXW_zq0QfM6FaAVUhjZ1Z6gsGWuaUnHRWlVL26GhQkmebtA1ZYdCsRZqtE3J2g5BWb4kt0fbbfCfO4yzHl20OAxmQr-LGoQEKYADJPT6D9r7XZjSc4milRSC8jpR1ZGywccYsNPblMiEvQaqD-3pXv-2pw_taZoGWJI-HKWY8n45DDpah5NNZQW0s269-9_kG_oBfGM</recordid><startdate>20130701</startdate><enddate>20130701</enddate><creator>Kim, Joseph H.T.</creator><creator>Jeon, Yongho</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope></search><sort><creationdate>20130701</creationdate><title>Credibility theory based on trimming</title><author>Kim, Joseph H.T. ; Jeon, Yongho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-44d418a0b9fa06522bb5734dc796cfea04763bb51fb5fe472d19ecb52dfe17c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Actuarial science</topic><topic>Asymptotic methods</topic><topic>Credibility</topic><topic>Economic models</topic><topic>Financial risks</topic><topic>Insurance</topic><topic>Insurance applications</topic><topic>Insurance premiums</topic><topic>L-estimator</topic><topic>Losses</topic><topic>Numerical analysis</topic><topic>Risk assessment</topic><topic>Risk measure</topic><topic>Risk theory</topic><topic>Statistical models</topic><topic>Structural analysis</topic><topic>Studies</topic><topic>Trimmed mean</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Joseph H.T.</creatorcontrib><creatorcontrib>Jeon, Yongho</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Insurance, mathematics &amp; economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Joseph H.T.</au><au>Jeon, Yongho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Credibility theory based on trimming</atitle><jtitle>Insurance, mathematics &amp; economics</jtitle><date>2013-07-01</date><risdate>2013</risdate><volume>53</volume><issue>1</issue><spage>36</spage><epage>47</epage><pages>36-47</pages><issn>0167-6687</issn><eissn>1873-5959</eissn><coden>IMECDX</coden><abstract>The classical credibility theory proposed by Bühlmann has been widely used in general insurance applications. In this paper we propose a credibility theory via truncation of the loss data, or the trimmed mean. The proposed framework contains the classical credibility theory as a special case and is based on the idea of varying the trimming threshold level to investigate the sensitivity of the credibility premium. After showing that the trimmed mean is not a coherent risk measure, we investigate some related asymptotic properties of the structural parameters in credibility. Later a numerical illustration shows that the proposed credibility models can successfully capture the tail risk of the underlying loss model, thus providing a better landscape of the overall risk that insurers assume. •In this paper we propose a credibility theory via truncation of the loss data.•The proposed framework contains the classical credibility theory as a special case.•It is shown that the trimmed mean is not a coherent risk measure.•Some related asymptotic properties are established.•A numerical illustration is provided.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.insmatheco.2013.03.012</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-6687
ispartof Insurance, mathematics & economics, 2013-07, Vol.53 (1), p.36-47
issn 0167-6687
1873-5959
language eng
recordid cdi_proquest_miscellaneous_1461641311
source Access via ScienceDirect (Elsevier)
subjects Actuarial science
Asymptotic methods
Credibility
Economic models
Financial risks
Insurance
Insurance applications
Insurance premiums
L-estimator
Losses
Numerical analysis
Risk assessment
Risk measure
Risk theory
Statistical models
Structural analysis
Studies
Trimmed mean
title Credibility theory based on trimming
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T00%3A55%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Credibility%20theory%20based%20on%20trimming&rft.jtitle=Insurance,%20mathematics%20&%20economics&rft.au=Kim,%20Joseph%20H.T.&rft.date=2013-07-01&rft.volume=53&rft.issue=1&rft.spage=36&rft.epage=47&rft.pages=36-47&rft.issn=0167-6687&rft.eissn=1873-5959&rft.coden=IMECDX&rft_id=info:doi/10.1016/j.insmatheco.2013.03.012&rft_dat=%3Cproquest_cross%3E3025212171%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1408644039&rft_id=info:pmid/&rft_els_id=S0167668713000541&rfr_iscdi=true