3D gradient system for two B0 field directions in earth’s field MRI

Object A new gradient system for earth’s field magnetic resonance imaging (EFMRI) is presented that can be rotated relatively to the earth’s field direction while maintaining the ability to encode images. Orthogonal components of the gradient field are exploited to reduce the number of gradient coil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Magma (New York, N.Y.) N.Y.), 2013-12, Vol.26 (6), p.565-573
Hauptverfasser: Lother, Steffen, Hoelscher, Uvo, Kampf, Thomas, Jakob, Peter, Fidler, Florian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 573
container_issue 6
container_start_page 565
container_title Magma (New York, N.Y.)
container_volume 26
creator Lother, Steffen
Hoelscher, Uvo
Kampf, Thomas
Jakob, Peter
Fidler, Florian
description Object A new gradient system for earth’s field magnetic resonance imaging (EFMRI) is presented that can be rotated relatively to the earth’s field direction while maintaining the ability to encode images. Orthogonal components of the gradient field are exploited to reduce the number of gradient coils. Materials and methods Two favorable orientations of the gradient system relative to the earth’s magnetic field (parallel and perpendicular) are discussed. We introduce the theory for the magnetic fields of the new gradient system and illustrate the design of the coil geometries which were worked out with the help of simulations and a numerical optimization algorithm. Field mapping measurements and imaging experiments in the two different orientations of the gradient system were carried out. Results Orthogonal components of the gradient field take over the role of the additionally needed gradient fields when the gradient system is rotated relative to the earth’s magnetic field. The results from the field mapping and imaging experiments verify the presented theory and show the functionality of the new gradient system. Conclusion The presented system demonstrates that gradient coils can be used for image encoding in multiple directions. This fact can be exploited to realize an EFMRI setup for parallel and perpendicular prepolarization with a single set of gradient coils.
doi_str_mv 10.1007/s10334-013-0376-5
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1461339366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1461339366</sourcerecordid><originalsourceid>FETCH-LOGICAL-p995-eaa6fcd9a8583f4dfe0fa978ca935b39370d488d9afad2c9ad078fb12bb1dfa13</originalsourceid><addsrcrecordid>eNo1kM1OAyEUhYnR2Fp9ADeGpRv0MgwMLLVWbVJjYronzAB1mvmpMI3pztfw9XwSMa2ruzhfTs79ELqkcEMBittIgbGcAGUEWCEIP0JjynhGpBD0GI1BCUl4lrMROotxDZBRDuwUjbIEcVGIMZqxB7wKxtauG3DcxcG12PcBD589vgfsa9dYbOvgqqHuu4jrDjsThvefr-94SF_e5ufoxJsmuovDnaDl42w5fSaL16f59G5BNkpx4owRvrLKSC6Zz6134I0qZGUU4yVTrACbS5kAb2xWKWOhkL6kWVlS6w1lE3S9r92E_mPr4qDbOlauaUzn-m3UNBeUpR4hEnp1QLdl66zehLo1Yaf_P09AtgdiirqVC3rdb0OX1msK-k-v3uvVSa_-06s5-wX4dGsV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1461339366</pqid></control><display><type>article</type><title>3D gradient system for two B0 field directions in earth’s field MRI</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Lother, Steffen ; Hoelscher, Uvo ; Kampf, Thomas ; Jakob, Peter ; Fidler, Florian</creator><creatorcontrib>Lother, Steffen ; Hoelscher, Uvo ; Kampf, Thomas ; Jakob, Peter ; Fidler, Florian</creatorcontrib><description>Object A new gradient system for earth’s field magnetic resonance imaging (EFMRI) is presented that can be rotated relatively to the earth’s field direction while maintaining the ability to encode images. Orthogonal components of the gradient field are exploited to reduce the number of gradient coils. Materials and methods Two favorable orientations of the gradient system relative to the earth’s magnetic field (parallel and perpendicular) are discussed. We introduce the theory for the magnetic fields of the new gradient system and illustrate the design of the coil geometries which were worked out with the help of simulations and a numerical optimization algorithm. Field mapping measurements and imaging experiments in the two different orientations of the gradient system were carried out. Results Orthogonal components of the gradient field take over the role of the additionally needed gradient fields when the gradient system is rotated relative to the earth’s magnetic field. The results from the field mapping and imaging experiments verify the presented theory and show the functionality of the new gradient system. Conclusion The presented system demonstrates that gradient coils can be used for image encoding in multiple directions. This fact can be exploited to realize an EFMRI setup for parallel and perpendicular prepolarization with a single set of gradient coils.</description><identifier>ISSN: 0968-5243</identifier><identifier>EISSN: 1352-8661</identifier><identifier>DOI: 10.1007/s10334-013-0376-5</identifier><identifier>PMID: 23525676</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Algorithms ; Biomedical Engineering and Bioengineering ; Computer Appl. in Life Sciences ; Computer Simulation ; Electromagnetic Fields ; Equipment Design ; Health Informatics ; Imaging ; Imaging, Three-Dimensional - instrumentation ; Magnetic Fields ; Magnetic Resonance Imaging ; Medicine ; Medicine &amp; Public Health ; Radiology ; Research Article ; Solid State Physics</subject><ispartof>Magma (New York, N.Y.), 2013-12, Vol.26 (6), p.565-573</ispartof><rights>ESMRMB 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p995-eaa6fcd9a8583f4dfe0fa978ca935b39370d488d9afad2c9ad078fb12bb1dfa13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10334-013-0376-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10334-013-0376-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23525676$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lother, Steffen</creatorcontrib><creatorcontrib>Hoelscher, Uvo</creatorcontrib><creatorcontrib>Kampf, Thomas</creatorcontrib><creatorcontrib>Jakob, Peter</creatorcontrib><creatorcontrib>Fidler, Florian</creatorcontrib><title>3D gradient system for two B0 field directions in earth’s field MRI</title><title>Magma (New York, N.Y.)</title><addtitle>Magn Reson Mater Phy</addtitle><addtitle>MAGMA</addtitle><description>Object A new gradient system for earth’s field magnetic resonance imaging (EFMRI) is presented that can be rotated relatively to the earth’s field direction while maintaining the ability to encode images. Orthogonal components of the gradient field are exploited to reduce the number of gradient coils. Materials and methods Two favorable orientations of the gradient system relative to the earth’s magnetic field (parallel and perpendicular) are discussed. We introduce the theory for the magnetic fields of the new gradient system and illustrate the design of the coil geometries which were worked out with the help of simulations and a numerical optimization algorithm. Field mapping measurements and imaging experiments in the two different orientations of the gradient system were carried out. Results Orthogonal components of the gradient field take over the role of the additionally needed gradient fields when the gradient system is rotated relative to the earth’s magnetic field. The results from the field mapping and imaging experiments verify the presented theory and show the functionality of the new gradient system. Conclusion The presented system demonstrates that gradient coils can be used for image encoding in multiple directions. This fact can be exploited to realize an EFMRI setup for parallel and perpendicular prepolarization with a single set of gradient coils.</description><subject>Algorithms</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Computer Appl. in Life Sciences</subject><subject>Computer Simulation</subject><subject>Electromagnetic Fields</subject><subject>Equipment Design</subject><subject>Health Informatics</subject><subject>Imaging</subject><subject>Imaging, Three-Dimensional - instrumentation</subject><subject>Magnetic Fields</subject><subject>Magnetic Resonance Imaging</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Radiology</subject><subject>Research Article</subject><subject>Solid State Physics</subject><issn>0968-5243</issn><issn>1352-8661</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1kM1OAyEUhYnR2Fp9ADeGpRv0MgwMLLVWbVJjYronzAB1mvmpMI3pztfw9XwSMa2ruzhfTs79ELqkcEMBittIgbGcAGUEWCEIP0JjynhGpBD0GI1BCUl4lrMROotxDZBRDuwUjbIEcVGIMZqxB7wKxtauG3DcxcG12PcBD589vgfsa9dYbOvgqqHuu4jrDjsThvefr-94SF_e5ufoxJsmuovDnaDl42w5fSaL16f59G5BNkpx4owRvrLKSC6Zz6134I0qZGUU4yVTrACbS5kAb2xWKWOhkL6kWVlS6w1lE3S9r92E_mPr4qDbOlauaUzn-m3UNBeUpR4hEnp1QLdl66zehLo1Yaf_P09AtgdiirqVC3rdb0OX1msK-k-v3uvVSa_-06s5-wX4dGsV</recordid><startdate>201312</startdate><enddate>201312</enddate><creator>Lother, Steffen</creator><creator>Hoelscher, Uvo</creator><creator>Kampf, Thomas</creator><creator>Jakob, Peter</creator><creator>Fidler, Florian</creator><general>Springer Berlin Heidelberg</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>201312</creationdate><title>3D gradient system for two B0 field directions in earth’s field MRI</title><author>Lother, Steffen ; Hoelscher, Uvo ; Kampf, Thomas ; Jakob, Peter ; Fidler, Florian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p995-eaa6fcd9a8583f4dfe0fa978ca935b39370d488d9afad2c9ad078fb12bb1dfa13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Computer Appl. in Life Sciences</topic><topic>Computer Simulation</topic><topic>Electromagnetic Fields</topic><topic>Equipment Design</topic><topic>Health Informatics</topic><topic>Imaging</topic><topic>Imaging, Three-Dimensional - instrumentation</topic><topic>Magnetic Fields</topic><topic>Magnetic Resonance Imaging</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Radiology</topic><topic>Research Article</topic><topic>Solid State Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lother, Steffen</creatorcontrib><creatorcontrib>Hoelscher, Uvo</creatorcontrib><creatorcontrib>Kampf, Thomas</creatorcontrib><creatorcontrib>Jakob, Peter</creatorcontrib><creatorcontrib>Fidler, Florian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Magma (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lother, Steffen</au><au>Hoelscher, Uvo</au><au>Kampf, Thomas</au><au>Jakob, Peter</au><au>Fidler, Florian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D gradient system for two B0 field directions in earth’s field MRI</atitle><jtitle>Magma (New York, N.Y.)</jtitle><stitle>Magn Reson Mater Phy</stitle><addtitle>MAGMA</addtitle><date>2013-12</date><risdate>2013</risdate><volume>26</volume><issue>6</issue><spage>565</spage><epage>573</epage><pages>565-573</pages><issn>0968-5243</issn><eissn>1352-8661</eissn><abstract>Object A new gradient system for earth’s field magnetic resonance imaging (EFMRI) is presented that can be rotated relatively to the earth’s field direction while maintaining the ability to encode images. Orthogonal components of the gradient field are exploited to reduce the number of gradient coils. Materials and methods Two favorable orientations of the gradient system relative to the earth’s magnetic field (parallel and perpendicular) are discussed. We introduce the theory for the magnetic fields of the new gradient system and illustrate the design of the coil geometries which were worked out with the help of simulations and a numerical optimization algorithm. Field mapping measurements and imaging experiments in the two different orientations of the gradient system were carried out. Results Orthogonal components of the gradient field take over the role of the additionally needed gradient fields when the gradient system is rotated relative to the earth’s magnetic field. The results from the field mapping and imaging experiments verify the presented theory and show the functionality of the new gradient system. Conclusion The presented system demonstrates that gradient coils can be used for image encoding in multiple directions. This fact can be exploited to realize an EFMRI setup for parallel and perpendicular prepolarization with a single set of gradient coils.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>23525676</pmid><doi>10.1007/s10334-013-0376-5</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0968-5243
ispartof Magma (New York, N.Y.), 2013-12, Vol.26 (6), p.565-573
issn 0968-5243
1352-8661
language eng
recordid cdi_proquest_miscellaneous_1461339366
source MEDLINE; SpringerLink Journals
subjects Algorithms
Biomedical Engineering and Bioengineering
Computer Appl. in Life Sciences
Computer Simulation
Electromagnetic Fields
Equipment Design
Health Informatics
Imaging
Imaging, Three-Dimensional - instrumentation
Magnetic Fields
Magnetic Resonance Imaging
Medicine
Medicine & Public Health
Radiology
Research Article
Solid State Physics
title 3D gradient system for two B0 field directions in earth’s field MRI
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T12%3A35%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20gradient%20system%20for%20two%20B0%20field%20directions%20in%20earth%E2%80%99s%20field%20MRI&rft.jtitle=Magma%20(New%20York,%20N.Y.)&rft.au=Lother,%20Steffen&rft.date=2013-12&rft.volume=26&rft.issue=6&rft.spage=565&rft.epage=573&rft.pages=565-573&rft.issn=0968-5243&rft.eissn=1352-8661&rft_id=info:doi/10.1007/s10334-013-0376-5&rft_dat=%3Cproquest_pubme%3E1461339366%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1461339366&rft_id=info:pmid/23525676&rfr_iscdi=true