Forecast Global Carbon Dioxide Emission using Swarm Intelligence

The tremendous effects of air quality in large cities have been considered a severe environmental problem all over the world. Therefore, the international community agreed to develop air quality standards to monitor and control pollution rates around industrial communities. Harmful emission into the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of computer applications 2013-01, Vol.77 (12), p.1-5
Hauptverfasser: Abdelfatah, Alaa, Mokhtar, Sahar A, Sheta, Alaa, Solaiman, Basma
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5
container_issue 12
container_start_page 1
container_title International journal of computer applications
container_volume 77
creator Abdelfatah, Alaa
Mokhtar, Sahar A
Sheta, Alaa
Solaiman, Basma
description The tremendous effects of air quality in large cities have been considered a severe environmental problem all over the world. Therefore, the international community agreed to develop air quality standards to monitor and control pollution rates around industrial communities. Harmful emission into the air is a sign that could extremely affect man's health, natural life and agriculture. Forecasting models is essential for predicting air quality. CO2 emissions have been an international concern because of fossil fuels. In this study, Particle Swarm Optimization (PSO) is used for analyzing world CO2 emission based on the global energy consumption. A parametric PSO model is developed to forecast CO2 emission based set of attributes. They include: global oil, natural gas, coal, and primary energy consumption. A data set collected during the years 1980 and 2010 were used in this study. Experimental results show that PSO can provide good modeling results using a limited number of measurements compared to other linear models.
doi_str_mv 10.5120/13443-1343
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1458535570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1458535570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1733-ae6ba7d9b82401f912c67765fab8703f1eb703ab458a0060c2c2c9dded581a9a3</originalsourceid><addsrcrecordid>eNpdUMFKAzEQDaJgqb34BQteRFhNNskmuSm1rYWCB_W8TLLZkrK7qcku6t-bWg_iDLw3DG8ej0HokuBbTgp8RyhjNE9IT9AEK8FzKaU4_TOfo1mMO5yKqqJUbILulz5YA3HIVq3X0GZzCNr32aPzn6622aJzMbq0GKPrt9nLB4QuW_eDbVu3tb2xF-isgTba2S9P0dty8Tp_yjfPq_X8YZMbIijNwZYaRK20LBgmjSKFKYUoeQNaCkwbYnUi0IxLwLjEpkit6trWXBJQQKfo-ui7D_59tHGoUjKTYkBv_Rgrki455Ty5TNHVP-nOj6FP6ZKKEZkisIPq5qgywccYbFPtg-sgfFUEV4d_Vj__PCCl33u1ZUU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1441882440</pqid></control><display><type>article</type><title>Forecast Global Carbon Dioxide Emission using Swarm Intelligence</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Abdelfatah, Alaa ; Mokhtar, Sahar A ; Sheta, Alaa ; Solaiman, Basma</creator><creatorcontrib>Abdelfatah, Alaa ; Mokhtar, Sahar A ; Sheta, Alaa ; Solaiman, Basma</creatorcontrib><description>The tremendous effects of air quality in large cities have been considered a severe environmental problem all over the world. Therefore, the international community agreed to develop air quality standards to monitor and control pollution rates around industrial communities. Harmful emission into the air is a sign that could extremely affect man's health, natural life and agriculture. Forecasting models is essential for predicting air quality. CO2 emissions have been an international concern because of fossil fuels. In this study, Particle Swarm Optimization (PSO) is used for analyzing world CO2 emission based on the global energy consumption. A parametric PSO model is developed to forecast CO2 emission based set of attributes. They include: global oil, natural gas, coal, and primary energy consumption. A data set collected during the years 1980 and 2010 were used in this study. Experimental results show that PSO can provide good modeling results using a limited number of measurements compared to other linear models.</description><identifier>ISSN: 0975-8887</identifier><identifier>EISSN: 0975-8887</identifier><identifier>DOI: 10.5120/13443-1343</identifier><language>eng</language><publisher>New York: Foundation of Computer Science</publisher><ispartof>International journal of computer applications, 2013-01, Vol.77 (12), p.1-5</ispartof><rights>Copyright Foundation of Computer Science 2013</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1733-ae6ba7d9b82401f912c67765fab8703f1eb703ab458a0060c2c2c9dded581a9a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Abdelfatah, Alaa</creatorcontrib><creatorcontrib>Mokhtar, Sahar A</creatorcontrib><creatorcontrib>Sheta, Alaa</creatorcontrib><creatorcontrib>Solaiman, Basma</creatorcontrib><title>Forecast Global Carbon Dioxide Emission using Swarm Intelligence</title><title>International journal of computer applications</title><description>The tremendous effects of air quality in large cities have been considered a severe environmental problem all over the world. Therefore, the international community agreed to develop air quality standards to monitor and control pollution rates around industrial communities. Harmful emission into the air is a sign that could extremely affect man's health, natural life and agriculture. Forecasting models is essential for predicting air quality. CO2 emissions have been an international concern because of fossil fuels. In this study, Particle Swarm Optimization (PSO) is used for analyzing world CO2 emission based on the global energy consumption. A parametric PSO model is developed to forecast CO2 emission based set of attributes. They include: global oil, natural gas, coal, and primary energy consumption. A data set collected during the years 1980 and 2010 were used in this study. Experimental results show that PSO can provide good modeling results using a limited number of measurements compared to other linear models.</description><issn>0975-8887</issn><issn>0975-8887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdUMFKAzEQDaJgqb34BQteRFhNNskmuSm1rYWCB_W8TLLZkrK7qcku6t-bWg_iDLw3DG8ej0HokuBbTgp8RyhjNE9IT9AEK8FzKaU4_TOfo1mMO5yKqqJUbILulz5YA3HIVq3X0GZzCNr32aPzn6622aJzMbq0GKPrt9nLB4QuW_eDbVu3tb2xF-isgTba2S9P0dty8Tp_yjfPq_X8YZMbIijNwZYaRK20LBgmjSKFKYUoeQNaCkwbYnUi0IxLwLjEpkit6trWXBJQQKfo-ui7D_59tHGoUjKTYkBv_Rgrki455Ty5TNHVP-nOj6FP6ZKKEZkisIPq5qgywccYbFPtg-sgfFUEV4d_Vj__PCCl33u1ZUU</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Abdelfatah, Alaa</creator><creator>Mokhtar, Sahar A</creator><creator>Sheta, Alaa</creator><creator>Solaiman, Basma</creator><general>Foundation of Computer Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TV</scope><scope>C1K</scope></search><sort><creationdate>20130101</creationdate><title>Forecast Global Carbon Dioxide Emission using Swarm Intelligence</title><author>Abdelfatah, Alaa ; Mokhtar, Sahar A ; Sheta, Alaa ; Solaiman, Basma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1733-ae6ba7d9b82401f912c67765fab8703f1eb703ab458a0060c2c2c9dded581a9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Abdelfatah, Alaa</creatorcontrib><creatorcontrib>Mokhtar, Sahar A</creatorcontrib><creatorcontrib>Sheta, Alaa</creatorcontrib><creatorcontrib>Solaiman, Basma</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>International journal of computer applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdelfatah, Alaa</au><au>Mokhtar, Sahar A</au><au>Sheta, Alaa</au><au>Solaiman, Basma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecast Global Carbon Dioxide Emission using Swarm Intelligence</atitle><jtitle>International journal of computer applications</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>77</volume><issue>12</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>0975-8887</issn><eissn>0975-8887</eissn><abstract>The tremendous effects of air quality in large cities have been considered a severe environmental problem all over the world. Therefore, the international community agreed to develop air quality standards to monitor and control pollution rates around industrial communities. Harmful emission into the air is a sign that could extremely affect man's health, natural life and agriculture. Forecasting models is essential for predicting air quality. CO2 emissions have been an international concern because of fossil fuels. In this study, Particle Swarm Optimization (PSO) is used for analyzing world CO2 emission based on the global energy consumption. A parametric PSO model is developed to forecast CO2 emission based set of attributes. They include: global oil, natural gas, coal, and primary energy consumption. A data set collected during the years 1980 and 2010 were used in this study. Experimental results show that PSO can provide good modeling results using a limited number of measurements compared to other linear models.</abstract><cop>New York</cop><pub>Foundation of Computer Science</pub><doi>10.5120/13443-1343</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0975-8887
ispartof International journal of computer applications, 2013-01, Vol.77 (12), p.1-5
issn 0975-8887
0975-8887
language eng
recordid cdi_proquest_miscellaneous_1458535570
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Forecast Global Carbon Dioxide Emission using Swarm Intelligence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A10%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecast%20Global%20Carbon%20Dioxide%20Emission%20using%20Swarm%20Intelligence&rft.jtitle=International%20journal%20of%20computer%20applications&rft.au=Abdelfatah,%20Alaa&rft.date=2013-01-01&rft.volume=77&rft.issue=12&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=0975-8887&rft.eissn=0975-8887&rft_id=info:doi/10.5120/13443-1343&rft_dat=%3Cproquest_cross%3E1458535570%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1441882440&rft_id=info:pmid/&rfr_iscdi=true