Forecast Global Carbon Dioxide Emission using Swarm Intelligence
The tremendous effects of air quality in large cities have been considered a severe environmental problem all over the world. Therefore, the international community agreed to develop air quality standards to monitor and control pollution rates around industrial communities. Harmful emission into the...
Gespeichert in:
Veröffentlicht in: | International journal of computer applications 2013-01, Vol.77 (12), p.1-5 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5 |
---|---|
container_issue | 12 |
container_start_page | 1 |
container_title | International journal of computer applications |
container_volume | 77 |
creator | Abdelfatah, Alaa Mokhtar, Sahar A Sheta, Alaa Solaiman, Basma |
description | The tremendous effects of air quality in large cities have been considered a severe environmental problem all over the world. Therefore, the international community agreed to develop air quality standards to monitor and control pollution rates around industrial communities. Harmful emission into the air is a sign that could extremely affect man's health, natural life and agriculture. Forecasting models is essential for predicting air quality. CO2 emissions have been an international concern because of fossil fuels. In this study, Particle Swarm Optimization (PSO) is used for analyzing world CO2 emission based on the global energy consumption. A parametric PSO model is developed to forecast CO2 emission based set of attributes. They include: global oil, natural gas, coal, and primary energy consumption. A data set collected during the years 1980 and 2010 were used in this study. Experimental results show that PSO can provide good modeling results using a limited number of measurements compared to other linear models. |
doi_str_mv | 10.5120/13443-1343 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1458535570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1458535570</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1733-ae6ba7d9b82401f912c67765fab8703f1eb703ab458a0060c2c2c9dded581a9a3</originalsourceid><addsrcrecordid>eNpdUMFKAzEQDaJgqb34BQteRFhNNskmuSm1rYWCB_W8TLLZkrK7qcku6t-bWg_iDLw3DG8ej0HokuBbTgp8RyhjNE9IT9AEK8FzKaU4_TOfo1mMO5yKqqJUbILulz5YA3HIVq3X0GZzCNr32aPzn6622aJzMbq0GKPrt9nLB4QuW_eDbVu3tb2xF-isgTba2S9P0dty8Tp_yjfPq_X8YZMbIijNwZYaRK20LBgmjSKFKYUoeQNaCkwbYnUi0IxLwLjEpkit6trWXBJQQKfo-ui7D_59tHGoUjKTYkBv_Rgrki455Ty5TNHVP-nOj6FP6ZKKEZkisIPq5qgywccYbFPtg-sgfFUEV4d_Vj__PCCl33u1ZUU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1441882440</pqid></control><display><type>article</type><title>Forecast Global Carbon Dioxide Emission using Swarm Intelligence</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Abdelfatah, Alaa ; Mokhtar, Sahar A ; Sheta, Alaa ; Solaiman, Basma</creator><creatorcontrib>Abdelfatah, Alaa ; Mokhtar, Sahar A ; Sheta, Alaa ; Solaiman, Basma</creatorcontrib><description>The tremendous effects of air quality in large cities have been considered a severe environmental problem all over the world. Therefore, the international community agreed to develop air quality standards to monitor and control pollution rates around industrial communities. Harmful emission into the air is a sign that could extremely affect man's health, natural life and agriculture. Forecasting models is essential for predicting air quality. CO2 emissions have been an international concern because of fossil fuels. In this study, Particle Swarm Optimization (PSO) is used for analyzing world CO2 emission based on the global energy consumption. A parametric PSO model is developed to forecast CO2 emission based set of attributes. They include: global oil, natural gas, coal, and primary energy consumption. A data set collected during the years 1980 and 2010 were used in this study. Experimental results show that PSO can provide good modeling results using a limited number of measurements compared to other linear models.</description><identifier>ISSN: 0975-8887</identifier><identifier>EISSN: 0975-8887</identifier><identifier>DOI: 10.5120/13443-1343</identifier><language>eng</language><publisher>New York: Foundation of Computer Science</publisher><ispartof>International journal of computer applications, 2013-01, Vol.77 (12), p.1-5</ispartof><rights>Copyright Foundation of Computer Science 2013</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1733-ae6ba7d9b82401f912c67765fab8703f1eb703ab458a0060c2c2c9dded581a9a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Abdelfatah, Alaa</creatorcontrib><creatorcontrib>Mokhtar, Sahar A</creatorcontrib><creatorcontrib>Sheta, Alaa</creatorcontrib><creatorcontrib>Solaiman, Basma</creatorcontrib><title>Forecast Global Carbon Dioxide Emission using Swarm Intelligence</title><title>International journal of computer applications</title><description>The tremendous effects of air quality in large cities have been considered a severe environmental problem all over the world. Therefore, the international community agreed to develop air quality standards to monitor and control pollution rates around industrial communities. Harmful emission into the air is a sign that could extremely affect man's health, natural life and agriculture. Forecasting models is essential for predicting air quality. CO2 emissions have been an international concern because of fossil fuels. In this study, Particle Swarm Optimization (PSO) is used for analyzing world CO2 emission based on the global energy consumption. A parametric PSO model is developed to forecast CO2 emission based set of attributes. They include: global oil, natural gas, coal, and primary energy consumption. A data set collected during the years 1980 and 2010 were used in this study. Experimental results show that PSO can provide good modeling results using a limited number of measurements compared to other linear models.</description><issn>0975-8887</issn><issn>0975-8887</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdUMFKAzEQDaJgqb34BQteRFhNNskmuSm1rYWCB_W8TLLZkrK7qcku6t-bWg_iDLw3DG8ej0HokuBbTgp8RyhjNE9IT9AEK8FzKaU4_TOfo1mMO5yKqqJUbILulz5YA3HIVq3X0GZzCNr32aPzn6622aJzMbq0GKPrt9nLB4QuW_eDbVu3tb2xF-isgTba2S9P0dty8Tp_yjfPq_X8YZMbIijNwZYaRK20LBgmjSKFKYUoeQNaCkwbYnUi0IxLwLjEpkit6trWXBJQQKfo-ui7D_59tHGoUjKTYkBv_Rgrki455Ty5TNHVP-nOj6FP6ZKKEZkisIPq5qgywccYbFPtg-sgfFUEV4d_Vj__PCCl33u1ZUU</recordid><startdate>20130101</startdate><enddate>20130101</enddate><creator>Abdelfatah, Alaa</creator><creator>Mokhtar, Sahar A</creator><creator>Sheta, Alaa</creator><creator>Solaiman, Basma</creator><general>Foundation of Computer Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7TV</scope><scope>C1K</scope></search><sort><creationdate>20130101</creationdate><title>Forecast Global Carbon Dioxide Emission using Swarm Intelligence</title><author>Abdelfatah, Alaa ; Mokhtar, Sahar A ; Sheta, Alaa ; Solaiman, Basma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1733-ae6ba7d9b82401f912c67765fab8703f1eb703ab458a0060c2c2c9dded581a9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Abdelfatah, Alaa</creatorcontrib><creatorcontrib>Mokhtar, Sahar A</creatorcontrib><creatorcontrib>Sheta, Alaa</creatorcontrib><creatorcontrib>Solaiman, Basma</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>International journal of computer applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdelfatah, Alaa</au><au>Mokhtar, Sahar A</au><au>Sheta, Alaa</au><au>Solaiman, Basma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecast Global Carbon Dioxide Emission using Swarm Intelligence</atitle><jtitle>International journal of computer applications</jtitle><date>2013-01-01</date><risdate>2013</risdate><volume>77</volume><issue>12</issue><spage>1</spage><epage>5</epage><pages>1-5</pages><issn>0975-8887</issn><eissn>0975-8887</eissn><abstract>The tremendous effects of air quality in large cities have been considered a severe environmental problem all over the world. Therefore, the international community agreed to develop air quality standards to monitor and control pollution rates around industrial communities. Harmful emission into the air is a sign that could extremely affect man's health, natural life and agriculture. Forecasting models is essential for predicting air quality. CO2 emissions have been an international concern because of fossil fuels. In this study, Particle Swarm Optimization (PSO) is used for analyzing world CO2 emission based on the global energy consumption. A parametric PSO model is developed to forecast CO2 emission based set of attributes. They include: global oil, natural gas, coal, and primary energy consumption. A data set collected during the years 1980 and 2010 were used in this study. Experimental results show that PSO can provide good modeling results using a limited number of measurements compared to other linear models.</abstract><cop>New York</cop><pub>Foundation of Computer Science</pub><doi>10.5120/13443-1343</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0975-8887 |
ispartof | International journal of computer applications, 2013-01, Vol.77 (12), p.1-5 |
issn | 0975-8887 0975-8887 |
language | eng |
recordid | cdi_proquest_miscellaneous_1458535570 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Forecast Global Carbon Dioxide Emission using Swarm Intelligence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T21%3A10%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecast%20Global%20Carbon%20Dioxide%20Emission%20using%20Swarm%20Intelligence&rft.jtitle=International%20journal%20of%20computer%20applications&rft.au=Abdelfatah,%20Alaa&rft.date=2013-01-01&rft.volume=77&rft.issue=12&rft.spage=1&rft.epage=5&rft.pages=1-5&rft.issn=0975-8887&rft.eissn=0975-8887&rft_id=info:doi/10.5120/13443-1343&rft_dat=%3Cproquest_cross%3E1458535570%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1441882440&rft_id=info:pmid/&rfr_iscdi=true |