Enhancing RGI lyase thermostability by targeted single point mutations

Rhamnogalacturonan I lyase (RGI lyase) (EC 4.2.2.-) catalyzes the cleavage of rhamnogalacturonan I in pectins by β-elimination. In this study the thermal stability of a RGI lyase (PL 11) originating from Bacillus licheniformis DSM 13/ATCC14580 was increased by a targeted protein engineering approach...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied microbiology and biotechnology 2013-11, Vol.97 (22), p.9727-9735
Hauptverfasser: Silva, Inês R, Larsen, Dorte M, Jers, Carsten, Derkx, Patrick, Meyer, Anne S, Mikkelsen, Jørn D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9735
container_issue 22
container_start_page 9727
container_title Applied microbiology and biotechnology
container_volume 97
creator Silva, Inês R
Larsen, Dorte M
Jers, Carsten
Derkx, Patrick
Meyer, Anne S
Mikkelsen, Jørn D
description Rhamnogalacturonan I lyase (RGI lyase) (EC 4.2.2.-) catalyzes the cleavage of rhamnogalacturonan I in pectins by β-elimination. In this study the thermal stability of a RGI lyase (PL 11) originating from Bacillus licheniformis DSM 13/ATCC14580 was increased by a targeted protein engineering approach involving single amino acid substitution. Nine individual amino acids were selected as targets for site-saturated mutagenesis by the use of a predictive consensus approach in combination with prediction of protein mutant stability changes and B-factor iteration testing. After extensive experimental verification of the thermal stability of the designed mutants versus the original wild-type RGI lyase, several promising single point mutations were obtained, particularly in position Glu434 on the surface of the enzyme protein. The best mutant, Glu434Leu, produced a half-life of 31 min at 60 °C, corresponding to a 1.6-fold improvement of the thermal stability compared to the original RGI lyase. Gly55Val was the second best mutation with a thermostability half-life increase of 27 min at 60 °C, and the best mutations following were Glu434Trp, Glu434Phe, and Glu434Tyr, respectively. The data verify the applicability of a combinatorial predictive approach for designing a small site saturation library for improving enzyme thermostability. In addition, new thermostable RGI lyases suitable for enzymatic upgrading of pectinaceous plant biomass materials at elevated temperatures were produced.
doi_str_mv 10.1007/s00253-013-5184-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1458535249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A352231896</galeid><sourcerecordid>A352231896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c591t-f8ce04670ca61c0d6951da343ab7874cd6985f83181c1ec5995808cc5191af93</originalsourceid><addsrcrecordid>eNp9kV1rFDEUhoModlv9Ad7ogDd6MTUnHzPJZSltXSgIbb0O2UxmmjKTrEkG3H9vlmnVFSm5CCTP83IOL0LvAJ8Cxu2XhDHhtMZAaw6C1fQFWgGjpMYNsJdohaHldculOELHKT1gDEQ0zWt0RKiUnBC-QpcX_l574_xQ3Vytq3Gnk63yvY1TSFlv3OjyrtrsqqzjYLPtqlTQ0Vbb4Hyupjnr7IJPb9CrXo_Jvn28T9Dd5cXd-df6-tvV-vzsujZcQq57YSxmTYuNbsDgrpEcOk0Z1ZtWtMyUB8F7QUGAAVscyQUWxnCQoHtJT9CnJXYbw4_Zpqwml4wdR-1tmJMCxgWnnLA9-vEf9CHM0ZfhCsVa1gig7R9q0KNVzvchR232oeqs5JAyiWwKdfofqpzOTs4Eb3tX3g-EzwdCYbL9mQc9p6TWtzeHLCysiSGlaHu1jW7ScacAq33NaqlZlZrVvmZFi_P-cbl5M9nut_HUawHIAqTy5Qcb_9r-mdQPi9TroPQQXVLfbwkGhjFm0JaaniMIZZLTX7JFwHk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1447468137</pqid></control><display><type>article</type><title>Enhancing RGI lyase thermostability by targeted single point mutations</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Silva, Inês R ; Larsen, Dorte M ; Jers, Carsten ; Derkx, Patrick ; Meyer, Anne S ; Mikkelsen, Jørn D</creator><creatorcontrib>Silva, Inês R ; Larsen, Dorte M ; Jers, Carsten ; Derkx, Patrick ; Meyer, Anne S ; Mikkelsen, Jørn D</creatorcontrib><description>Rhamnogalacturonan I lyase (RGI lyase) (EC 4.2.2.-) catalyzes the cleavage of rhamnogalacturonan I in pectins by β-elimination. In this study the thermal stability of a RGI lyase (PL 11) originating from Bacillus licheniformis DSM 13/ATCC14580 was increased by a targeted protein engineering approach involving single amino acid substitution. Nine individual amino acids were selected as targets for site-saturated mutagenesis by the use of a predictive consensus approach in combination with prediction of protein mutant stability changes and B-factor iteration testing. After extensive experimental verification of the thermal stability of the designed mutants versus the original wild-type RGI lyase, several promising single point mutations were obtained, particularly in position Glu434 on the surface of the enzyme protein. The best mutant, Glu434Leu, produced a half-life of 31 min at 60 °C, corresponding to a 1.6-fold improvement of the thermal stability compared to the original RGI lyase. Gly55Val was the second best mutation with a thermostability half-life increase of 27 min at 60 °C, and the best mutations following were Glu434Trp, Glu434Phe, and Glu434Tyr, respectively. The data verify the applicability of a combinatorial predictive approach for designing a small site saturation library for improving enzyme thermostability. In addition, new thermostable RGI lyases suitable for enzymatic upgrading of pectinaceous plant biomass materials at elevated temperatures were produced.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-013-5184-3</identifier><identifier>PMID: 23995225</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>amino acid substitution ; Amino acids ; Analysis ; Applied Genetics and Molecular Biotechnology ; Bacillus - enzymology ; Bacillus - genetics ; Bacillus licheniformis ; Bacteria ; Biomass ; Biomedical and Life Sciences ; Biotechnology ; Cellular biology ; DNA Mutational Analysis ; DNA, Bacterial - chemistry ; DNA, Bacterial - genetics ; Engineering ; Enzyme Stability ; Enzymes ; Evolution ; Genetic aspects ; half life ; High temperature ; Libraries ; Life Sciences ; Lyases ; Microbial Genetics and Genomics ; Microbiology ; Molecular Sequence Data ; Mutagenesis ; Mutagenesis, Site-Directed ; Mutant Proteins - chemistry ; Mutant Proteins - genetics ; Mutant Proteins - metabolism ; mutants ; Mutation ; Optimization ; pectins ; Pectins - metabolism ; Plant biomass ; Point Mutation ; Polysaccharide-Lyases - chemistry ; Polysaccharide-Lyases - genetics ; Polysaccharide-Lyases - metabolism ; Polysaccharides ; prediction ; protein engineering ; Protein Stability ; Proteins ; Sequence Analysis, DNA ; Studies ; Temperature ; Thermal properties ; thermal stability</subject><ispartof>Applied microbiology and biotechnology, 2013-11, Vol.97 (22), p.9727-9735</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>COPYRIGHT 2013 Springer</rights><rights>Springer-Verlag 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c591t-f8ce04670ca61c0d6951da343ab7874cd6985f83181c1ec5995808cc5191af93</citedby><cites>FETCH-LOGICAL-c591t-f8ce04670ca61c0d6951da343ab7874cd6985f83181c1ec5995808cc5191af93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00253-013-5184-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00253-013-5184-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23995225$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Silva, Inês R</creatorcontrib><creatorcontrib>Larsen, Dorte M</creatorcontrib><creatorcontrib>Jers, Carsten</creatorcontrib><creatorcontrib>Derkx, Patrick</creatorcontrib><creatorcontrib>Meyer, Anne S</creatorcontrib><creatorcontrib>Mikkelsen, Jørn D</creatorcontrib><title>Enhancing RGI lyase thermostability by targeted single point mutations</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>Rhamnogalacturonan I lyase (RGI lyase) (EC 4.2.2.-) catalyzes the cleavage of rhamnogalacturonan I in pectins by β-elimination. In this study the thermal stability of a RGI lyase (PL 11) originating from Bacillus licheniformis DSM 13/ATCC14580 was increased by a targeted protein engineering approach involving single amino acid substitution. Nine individual amino acids were selected as targets for site-saturated mutagenesis by the use of a predictive consensus approach in combination with prediction of protein mutant stability changes and B-factor iteration testing. After extensive experimental verification of the thermal stability of the designed mutants versus the original wild-type RGI lyase, several promising single point mutations were obtained, particularly in position Glu434 on the surface of the enzyme protein. The best mutant, Glu434Leu, produced a half-life of 31 min at 60 °C, corresponding to a 1.6-fold improvement of the thermal stability compared to the original RGI lyase. Gly55Val was the second best mutation with a thermostability half-life increase of 27 min at 60 °C, and the best mutations following were Glu434Trp, Glu434Phe, and Glu434Tyr, respectively. The data verify the applicability of a combinatorial predictive approach for designing a small site saturation library for improving enzyme thermostability. In addition, new thermostable RGI lyases suitable for enzymatic upgrading of pectinaceous plant biomass materials at elevated temperatures were produced.</description><subject>amino acid substitution</subject><subject>Amino acids</subject><subject>Analysis</subject><subject>Applied Genetics and Molecular Biotechnology</subject><subject>Bacillus - enzymology</subject><subject>Bacillus - genetics</subject><subject>Bacillus licheniformis</subject><subject>Bacteria</subject><subject>Biomass</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cellular biology</subject><subject>DNA Mutational Analysis</subject><subject>DNA, Bacterial - chemistry</subject><subject>DNA, Bacterial - genetics</subject><subject>Engineering</subject><subject>Enzyme Stability</subject><subject>Enzymes</subject><subject>Evolution</subject><subject>Genetic aspects</subject><subject>half life</subject><subject>High temperature</subject><subject>Libraries</subject><subject>Life Sciences</subject><subject>Lyases</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Molecular Sequence Data</subject><subject>Mutagenesis</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutant Proteins - chemistry</subject><subject>Mutant Proteins - genetics</subject><subject>Mutant Proteins - metabolism</subject><subject>mutants</subject><subject>Mutation</subject><subject>Optimization</subject><subject>pectins</subject><subject>Pectins - metabolism</subject><subject>Plant biomass</subject><subject>Point Mutation</subject><subject>Polysaccharide-Lyases - chemistry</subject><subject>Polysaccharide-Lyases - genetics</subject><subject>Polysaccharide-Lyases - metabolism</subject><subject>Polysaccharides</subject><subject>prediction</subject><subject>protein engineering</subject><subject>Protein Stability</subject><subject>Proteins</subject><subject>Sequence Analysis, DNA</subject><subject>Studies</subject><subject>Temperature</subject><subject>Thermal properties</subject><subject>thermal stability</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kV1rFDEUhoModlv9Ad7ogDd6MTUnHzPJZSltXSgIbb0O2UxmmjKTrEkG3H9vlmnVFSm5CCTP83IOL0LvAJ8Cxu2XhDHhtMZAaw6C1fQFWgGjpMYNsJdohaHldculOELHKT1gDEQ0zWt0RKiUnBC-QpcX_l574_xQ3Vytq3Gnk63yvY1TSFlv3OjyrtrsqqzjYLPtqlTQ0Vbb4Hyupjnr7IJPb9CrXo_Jvn28T9Dd5cXd-df6-tvV-vzsujZcQq57YSxmTYuNbsDgrpEcOk0Z1ZtWtMyUB8F7QUGAAVscyQUWxnCQoHtJT9CnJXYbw4_Zpqwml4wdR-1tmJMCxgWnnLA9-vEf9CHM0ZfhCsVa1gig7R9q0KNVzvchR232oeqs5JAyiWwKdfofqpzOTs4Eb3tX3g-EzwdCYbL9mQc9p6TWtzeHLCysiSGlaHu1jW7ScacAq33NaqlZlZrVvmZFi_P-cbl5M9nut_HUawHIAqTy5Qcb_9r-mdQPi9TroPQQXVLfbwkGhjFm0JaaniMIZZLTX7JFwHk</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Silva, Inês R</creator><creator>Larsen, Dorte M</creator><creator>Jers, Carsten</creator><creator>Derkx, Patrick</creator><creator>Meyer, Anne S</creator><creator>Mikkelsen, Jørn D</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7QO</scope></search><sort><creationdate>20131101</creationdate><title>Enhancing RGI lyase thermostability by targeted single point mutations</title><author>Silva, Inês R ; Larsen, Dorte M ; Jers, Carsten ; Derkx, Patrick ; Meyer, Anne S ; Mikkelsen, Jørn D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c591t-f8ce04670ca61c0d6951da343ab7874cd6985f83181c1ec5995808cc5191af93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>amino acid substitution</topic><topic>Amino acids</topic><topic>Analysis</topic><topic>Applied Genetics and Molecular Biotechnology</topic><topic>Bacillus - enzymology</topic><topic>Bacillus - genetics</topic><topic>Bacillus licheniformis</topic><topic>Bacteria</topic><topic>Biomass</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cellular biology</topic><topic>DNA Mutational Analysis</topic><topic>DNA, Bacterial - chemistry</topic><topic>DNA, Bacterial - genetics</topic><topic>Engineering</topic><topic>Enzyme Stability</topic><topic>Enzymes</topic><topic>Evolution</topic><topic>Genetic aspects</topic><topic>half life</topic><topic>High temperature</topic><topic>Libraries</topic><topic>Life Sciences</topic><topic>Lyases</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Molecular Sequence Data</topic><topic>Mutagenesis</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutant Proteins - chemistry</topic><topic>Mutant Proteins - genetics</topic><topic>Mutant Proteins - metabolism</topic><topic>mutants</topic><topic>Mutation</topic><topic>Optimization</topic><topic>pectins</topic><topic>Pectins - metabolism</topic><topic>Plant biomass</topic><topic>Point Mutation</topic><topic>Polysaccharide-Lyases - chemistry</topic><topic>Polysaccharide-Lyases - genetics</topic><topic>Polysaccharide-Lyases - metabolism</topic><topic>Polysaccharides</topic><topic>prediction</topic><topic>protein engineering</topic><topic>Protein Stability</topic><topic>Proteins</topic><topic>Sequence Analysis, DNA</topic><topic>Studies</topic><topic>Temperature</topic><topic>Thermal properties</topic><topic>thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Inês R</creatorcontrib><creatorcontrib>Larsen, Dorte M</creatorcontrib><creatorcontrib>Jers, Carsten</creatorcontrib><creatorcontrib>Derkx, Patrick</creatorcontrib><creatorcontrib>Meyer, Anne S</creatorcontrib><creatorcontrib>Mikkelsen, Jørn D</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, Inês R</au><au>Larsen, Dorte M</au><au>Jers, Carsten</au><au>Derkx, Patrick</au><au>Meyer, Anne S</au><au>Mikkelsen, Jørn D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing RGI lyase thermostability by targeted single point mutations</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>97</volume><issue>22</issue><spage>9727</spage><epage>9735</epage><pages>9727-9735</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>Rhamnogalacturonan I lyase (RGI lyase) (EC 4.2.2.-) catalyzes the cleavage of rhamnogalacturonan I in pectins by β-elimination. In this study the thermal stability of a RGI lyase (PL 11) originating from Bacillus licheniformis DSM 13/ATCC14580 was increased by a targeted protein engineering approach involving single amino acid substitution. Nine individual amino acids were selected as targets for site-saturated mutagenesis by the use of a predictive consensus approach in combination with prediction of protein mutant stability changes and B-factor iteration testing. After extensive experimental verification of the thermal stability of the designed mutants versus the original wild-type RGI lyase, several promising single point mutations were obtained, particularly in position Glu434 on the surface of the enzyme protein. The best mutant, Glu434Leu, produced a half-life of 31 min at 60 °C, corresponding to a 1.6-fold improvement of the thermal stability compared to the original RGI lyase. Gly55Val was the second best mutation with a thermostability half-life increase of 27 min at 60 °C, and the best mutations following were Glu434Trp, Glu434Phe, and Glu434Tyr, respectively. The data verify the applicability of a combinatorial predictive approach for designing a small site saturation library for improving enzyme thermostability. In addition, new thermostable RGI lyases suitable for enzymatic upgrading of pectinaceous plant biomass materials at elevated temperatures were produced.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>23995225</pmid><doi>10.1007/s00253-013-5184-3</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2013-11, Vol.97 (22), p.9727-9735
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_1458535249
source MEDLINE; SpringerLink Journals
subjects amino acid substitution
Amino acids
Analysis
Applied Genetics and Molecular Biotechnology
Bacillus - enzymology
Bacillus - genetics
Bacillus licheniformis
Bacteria
Biomass
Biomedical and Life Sciences
Biotechnology
Cellular biology
DNA Mutational Analysis
DNA, Bacterial - chemistry
DNA, Bacterial - genetics
Engineering
Enzyme Stability
Enzymes
Evolution
Genetic aspects
half life
High temperature
Libraries
Life Sciences
Lyases
Microbial Genetics and Genomics
Microbiology
Molecular Sequence Data
Mutagenesis
Mutagenesis, Site-Directed
Mutant Proteins - chemistry
Mutant Proteins - genetics
Mutant Proteins - metabolism
mutants
Mutation
Optimization
pectins
Pectins - metabolism
Plant biomass
Point Mutation
Polysaccharide-Lyases - chemistry
Polysaccharide-Lyases - genetics
Polysaccharide-Lyases - metabolism
Polysaccharides
prediction
protein engineering
Protein Stability
Proteins
Sequence Analysis, DNA
Studies
Temperature
Thermal properties
thermal stability
title Enhancing RGI lyase thermostability by targeted single point mutations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A17%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20RGI%20lyase%20thermostability%20by%20targeted%20single%20point%20mutations&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Silva,%20In%C3%AAs%20R&rft.date=2013-11-01&rft.volume=97&rft.issue=22&rft.spage=9727&rft.epage=9735&rft.pages=9727-9735&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-013-5184-3&rft_dat=%3Cgale_proqu%3EA352231896%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1447468137&rft_id=info:pmid/23995225&rft_galeid=A352231896&rfr_iscdi=true