Added value of convection permitting seasonal simulations

In this study the added value of a ensemble of convection permitting climate simulations (CPCSs) compared to coarser gridded simulations is investigated. The ensemble consists of three non hydrostatic regional climate models providing five simulations with ~10 and ~3 km (CPCS) horizontal grid spacin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Climate dynamics 2013-11, Vol.41 (9-10), p.2655-2677
Hauptverfasser: Prein, A. F., Gobiet, A., Suklitsch, M., Truhetz, H., Awan, N. K., Keuler, K., Georgievski, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study the added value of a ensemble of convection permitting climate simulations (CPCSs) compared to coarser gridded simulations is investigated. The ensemble consists of three non hydrostatic regional climate models providing five simulations with ~10 and ~3 km (CPCS) horizontal grid spacing each. The simulated temperature, precipitation, relative humidity, and global radiation fields are evaluated within two seasons (JJA 2007 and DJF 2007–2008) in the eastern part of the European Alps. Spatial variability, diurnal cycles, temporal correlations, and distributions with focus on extreme events are analyzed and specific methods (FSS and SAL) are used for in-depth analysis of precipitation fields. The most important added value of CPCSs are found in the diurnal cycle improved timing of summer convective precipitation, the intensity of most extreme precipitation, and the size and shape of precipitation objects. These improvements are not caused by the higher resolved orography but by the explicit treatment of deep convection and the more realistic model dynamics. In contrary improvements in summer temperature fields can be fully attributed to the higher resolved orography. Generally, added value of CPCSs is predominantly found in summer, in complex terrain, on small spatial and temporal scales, and for high precipitation intensities.
ISSN:0930-7575
1432-0894
DOI:10.1007/s00382-013-1744-6