Steps Toward a Large-Scale Solar Image Data Analysis to Differentiate Solar Phenomena
We detail the investigation of the first application of several dissimilarity measures for large-scale solar image data analysis. Using a solar-domain-specific benchmark dataset that contains multiple types of phenomena, we analyzed combinations of image parameters with different dissimilarity measu...
Gespeichert in:
Veröffentlicht in: | Solar physics 2013-11, Vol.288 (1), p.435-462 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 462 |
---|---|
container_issue | 1 |
container_start_page | 435 |
container_title | Solar physics |
container_volume | 288 |
creator | Banda, J. M. Angryk, R. A. Martens, P. C. H. |
description | We detail the investigation of the first application of several dissimilarity measures for large-scale solar image data analysis. Using a solar-domain-specific benchmark dataset that contains multiple types of phenomena, we analyzed combinations of image parameters with different dissimilarity measures to determine the combinations that will allow us to differentiate between the multiple solar phenomena from both intra-class and inter-class perspectives, where by class we refer to the same types of solar phenomena. We also investigate the problem of reducing data dimensionality by applying multi-dimensional scaling to the dissimilarity matrices that we produced using the previously mentioned combinations. As an early investigation into dimensionality reduction, we investigate by applying multidimensional scaling (MDS) how many MDS components are needed to maintain a good representation of our data (in a new artificial data space) and how many can be discarded to enhance our querying performance. Finally, we present a comparative analysis of several classifiers to determine the quality of the dimensionality reduction achieved with this combination of image parameters, similarity measures, and MDS. |
doi_str_mv | 10.1007/s11207-013-0304-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1458526142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110992641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-f955ded0f28fc2a5e6f25c9e71c633fdb5e547a5d71e402a06c9d6ad25acf9a3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLcFL16i-5HNx7G0fhQKCq3gbRk3szUlydbdFNt_b0IURPA0M_C8L8xDyCVnN5yx9DZwLlgaMS4jJlkc7Y_IiKu0u3L5ekxGjMms37NTchbChrE-pUbkZdniNtCV-wRfUKAL8GuMlgYqpEtXgafzGtZIZ9ACnTRQHUIZaOvorLQWPTZtCe0P-vyOjauxgXNyYqEKePE9x2R1f7eaPkaLp4f5dLKIjIzzNrK5UgUWzIrMGgEKEyuUyTHlJpHSFm8KVZyCKlKOMRPAEpMXCRRCgbE5yDG5Hmq33n3sMLS6LoPBqoIG3S5oHqtMiYTHokOv_qAbt_PdPz0VJ0LkiicdxQfKeBeCR6u3vqzBHzRnujemB8-686x7z3rfZcSQCR3brNH_av439AWz4YAo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1446229516</pqid></control><display><type>article</type><title>Steps Toward a Large-Scale Solar Image Data Analysis to Differentiate Solar Phenomena</title><source>SpringerNature Journals</source><creator>Banda, J. M. ; Angryk, R. A. ; Martens, P. C. H.</creator><creatorcontrib>Banda, J. M. ; Angryk, R. A. ; Martens, P. C. H.</creatorcontrib><description>We detail the investigation of the first application of several dissimilarity measures for large-scale solar image data analysis. Using a solar-domain-specific benchmark dataset that contains multiple types of phenomena, we analyzed combinations of image parameters with different dissimilarity measures to determine the combinations that will allow us to differentiate between the multiple solar phenomena from both intra-class and inter-class perspectives, where by class we refer to the same types of solar phenomena. We also investigate the problem of reducing data dimensionality by applying multi-dimensional scaling to the dissimilarity matrices that we produced using the previously mentioned combinations. As an early investigation into dimensionality reduction, we investigate by applying multidimensional scaling (MDS) how many MDS components are needed to maintain a good representation of our data (in a new artificial data space) and how many can be discarded to enhance our querying performance. Finally, we present a comparative analysis of several classifiers to determine the quality of the dimensionality reduction achieved with this combination of image parameters, similarity measures, and MDS.</description><identifier>ISSN: 0038-0938</identifier><identifier>EISSN: 1573-093X</identifier><identifier>DOI: 10.1007/s11207-013-0304-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Astrophysics and Astroparticles ; Atmospheric Sciences ; Data reduction ; Image Processing in the Petabyte Era ; Image processing systems ; Physics ; Physics and Astronomy ; Solar physics ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Sun</subject><ispartof>Solar physics, 2013-11, Vol.288 (1), p.435-462</ispartof><rights>Springer Science+Business Media Dordrecht 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-f955ded0f28fc2a5e6f25c9e71c633fdb5e547a5d71e402a06c9d6ad25acf9a3</citedby><cites>FETCH-LOGICAL-c349t-f955ded0f28fc2a5e6f25c9e71c633fdb5e547a5d71e402a06c9d6ad25acf9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11207-013-0304-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11207-013-0304-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Banda, J. M.</creatorcontrib><creatorcontrib>Angryk, R. A.</creatorcontrib><creatorcontrib>Martens, P. C. H.</creatorcontrib><title>Steps Toward a Large-Scale Solar Image Data Analysis to Differentiate Solar Phenomena</title><title>Solar physics</title><addtitle>Sol Phys</addtitle><description>We detail the investigation of the first application of several dissimilarity measures for large-scale solar image data analysis. Using a solar-domain-specific benchmark dataset that contains multiple types of phenomena, we analyzed combinations of image parameters with different dissimilarity measures to determine the combinations that will allow us to differentiate between the multiple solar phenomena from both intra-class and inter-class perspectives, where by class we refer to the same types of solar phenomena. We also investigate the problem of reducing data dimensionality by applying multi-dimensional scaling to the dissimilarity matrices that we produced using the previously mentioned combinations. As an early investigation into dimensionality reduction, we investigate by applying multidimensional scaling (MDS) how many MDS components are needed to maintain a good representation of our data (in a new artificial data space) and how many can be discarded to enhance our querying performance. Finally, we present a comparative analysis of several classifiers to determine the quality of the dimensionality reduction achieved with this combination of image parameters, similarity measures, and MDS.</description><subject>Astrophysics and Astroparticles</subject><subject>Atmospheric Sciences</subject><subject>Data reduction</subject><subject>Image Processing in the Petabyte Era</subject><subject>Image processing systems</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solar physics</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Sun</subject><issn>0038-0938</issn><issn>1573-093X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1Lw0AQhhdRsFZ_gLcFL16i-5HNx7G0fhQKCq3gbRk3szUlydbdFNt_b0IURPA0M_C8L8xDyCVnN5yx9DZwLlgaMS4jJlkc7Y_IiKu0u3L5ekxGjMms37NTchbChrE-pUbkZdniNtCV-wRfUKAL8GuMlgYqpEtXgafzGtZIZ9ACnTRQHUIZaOvorLQWPTZtCe0P-vyOjauxgXNyYqEKePE9x2R1f7eaPkaLp4f5dLKIjIzzNrK5UgUWzIrMGgEKEyuUyTHlJpHSFm8KVZyCKlKOMRPAEpMXCRRCgbE5yDG5Hmq33n3sMLS6LoPBqoIG3S5oHqtMiYTHokOv_qAbt_PdPz0VJ0LkiicdxQfKeBeCR6u3vqzBHzRnujemB8-686x7z3rfZcSQCR3brNH_av439AWz4YAo</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Banda, J. M.</creator><creator>Angryk, R. A.</creator><creator>Martens, P. C. H.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20131101</creationdate><title>Steps Toward a Large-Scale Solar Image Data Analysis to Differentiate Solar Phenomena</title><author>Banda, J. M. ; Angryk, R. A. ; Martens, P. C. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-f955ded0f28fc2a5e6f25c9e71c633fdb5e547a5d71e402a06c9d6ad25acf9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Astrophysics and Astroparticles</topic><topic>Atmospheric Sciences</topic><topic>Data reduction</topic><topic>Image Processing in the Petabyte Era</topic><topic>Image processing systems</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solar physics</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Sun</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banda, J. M.</creatorcontrib><creatorcontrib>Angryk, R. A.</creatorcontrib><creatorcontrib>Martens, P. C. H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Solar physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banda, J. M.</au><au>Angryk, R. A.</au><au>Martens, P. C. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Steps Toward a Large-Scale Solar Image Data Analysis to Differentiate Solar Phenomena</atitle><jtitle>Solar physics</jtitle><stitle>Sol Phys</stitle><date>2013-11-01</date><risdate>2013</risdate><volume>288</volume><issue>1</issue><spage>435</spage><epage>462</epage><pages>435-462</pages><issn>0038-0938</issn><eissn>1573-093X</eissn><abstract>We detail the investigation of the first application of several dissimilarity measures for large-scale solar image data analysis. Using a solar-domain-specific benchmark dataset that contains multiple types of phenomena, we analyzed combinations of image parameters with different dissimilarity measures to determine the combinations that will allow us to differentiate between the multiple solar phenomena from both intra-class and inter-class perspectives, where by class we refer to the same types of solar phenomena. We also investigate the problem of reducing data dimensionality by applying multi-dimensional scaling to the dissimilarity matrices that we produced using the previously mentioned combinations. As an early investigation into dimensionality reduction, we investigate by applying multidimensional scaling (MDS) how many MDS components are needed to maintain a good representation of our data (in a new artificial data space) and how many can be discarded to enhance our querying performance. Finally, we present a comparative analysis of several classifiers to determine the quality of the dimensionality reduction achieved with this combination of image parameters, similarity measures, and MDS.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11207-013-0304-x</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-0938 |
ispartof | Solar physics, 2013-11, Vol.288 (1), p.435-462 |
issn | 0038-0938 1573-093X |
language | eng |
recordid | cdi_proquest_miscellaneous_1458526142 |
source | SpringerNature Journals |
subjects | Astrophysics and Astroparticles Atmospheric Sciences Data reduction Image Processing in the Petabyte Era Image processing systems Physics Physics and Astronomy Solar physics Space Exploration and Astronautics Space Sciences (including Extraterrestrial Physics Sun |
title | Steps Toward a Large-Scale Solar Image Data Analysis to Differentiate Solar Phenomena |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A30%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Steps%20Toward%20a%20Large-Scale%20Solar%20Image%20Data%20Analysis%20to%20Differentiate%20Solar%20Phenomena&rft.jtitle=Solar%20physics&rft.au=Banda,%20J.%20M.&rft.date=2013-11-01&rft.volume=288&rft.issue=1&rft.spage=435&rft.epage=462&rft.pages=435-462&rft.issn=0038-0938&rft.eissn=1573-093X&rft_id=info:doi/10.1007/s11207-013-0304-x&rft_dat=%3Cproquest_cross%3E3110992641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1446229516&rft_id=info:pmid/&rfr_iscdi=true |