Steps Toward a Large-Scale Solar Image Data Analysis to Differentiate Solar Phenomena

We detail the investigation of the first application of several dissimilarity measures for large-scale solar image data analysis. Using a solar-domain-specific benchmark dataset that contains multiple types of phenomena, we analyzed combinations of image parameters with different dissimilarity measu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar physics 2013-11, Vol.288 (1), p.435-462
Hauptverfasser: Banda, J. M., Angryk, R. A., Martens, P. C. H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 462
container_issue 1
container_start_page 435
container_title Solar physics
container_volume 288
creator Banda, J. M.
Angryk, R. A.
Martens, P. C. H.
description We detail the investigation of the first application of several dissimilarity measures for large-scale solar image data analysis. Using a solar-domain-specific benchmark dataset that contains multiple types of phenomena, we analyzed combinations of image parameters with different dissimilarity measures to determine the combinations that will allow us to differentiate between the multiple solar phenomena from both intra-class and inter-class perspectives, where by class we refer to the same types of solar phenomena. We also investigate the problem of reducing data dimensionality by applying multi-dimensional scaling to the dissimilarity matrices that we produced using the previously mentioned combinations. As an early investigation into dimensionality reduction, we investigate by applying multidimensional scaling (MDS) how many MDS components are needed to maintain a good representation of our data (in a new artificial data space) and how many can be discarded to enhance our querying performance. Finally, we present a comparative analysis of several classifiers to determine the quality of the dimensionality reduction achieved with this combination of image parameters, similarity measures, and MDS.
doi_str_mv 10.1007/s11207-013-0304-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1458526142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110992641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-f955ded0f28fc2a5e6f25c9e71c633fdb5e547a5d71e402a06c9d6ad25acf9a3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLcFL16i-5HNx7G0fhQKCq3gbRk3szUlydbdFNt_b0IURPA0M_C8L8xDyCVnN5yx9DZwLlgaMS4jJlkc7Y_IiKu0u3L5ekxGjMms37NTchbChrE-pUbkZdniNtCV-wRfUKAL8GuMlgYqpEtXgafzGtZIZ9ACnTRQHUIZaOvorLQWPTZtCe0P-vyOjauxgXNyYqEKePE9x2R1f7eaPkaLp4f5dLKIjIzzNrK5UgUWzIrMGgEKEyuUyTHlJpHSFm8KVZyCKlKOMRPAEpMXCRRCgbE5yDG5Hmq33n3sMLS6LoPBqoIG3S5oHqtMiYTHokOv_qAbt_PdPz0VJ0LkiicdxQfKeBeCR6u3vqzBHzRnujemB8-686x7z3rfZcSQCR3brNH_av439AWz4YAo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1446229516</pqid></control><display><type>article</type><title>Steps Toward a Large-Scale Solar Image Data Analysis to Differentiate Solar Phenomena</title><source>SpringerNature Journals</source><creator>Banda, J. M. ; Angryk, R. A. ; Martens, P. C. H.</creator><creatorcontrib>Banda, J. M. ; Angryk, R. A. ; Martens, P. C. H.</creatorcontrib><description>We detail the investigation of the first application of several dissimilarity measures for large-scale solar image data analysis. Using a solar-domain-specific benchmark dataset that contains multiple types of phenomena, we analyzed combinations of image parameters with different dissimilarity measures to determine the combinations that will allow us to differentiate between the multiple solar phenomena from both intra-class and inter-class perspectives, where by class we refer to the same types of solar phenomena. We also investigate the problem of reducing data dimensionality by applying multi-dimensional scaling to the dissimilarity matrices that we produced using the previously mentioned combinations. As an early investigation into dimensionality reduction, we investigate by applying multidimensional scaling (MDS) how many MDS components are needed to maintain a good representation of our data (in a new artificial data space) and how many can be discarded to enhance our querying performance. Finally, we present a comparative analysis of several classifiers to determine the quality of the dimensionality reduction achieved with this combination of image parameters, similarity measures, and MDS.</description><identifier>ISSN: 0038-0938</identifier><identifier>EISSN: 1573-093X</identifier><identifier>DOI: 10.1007/s11207-013-0304-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Astrophysics and Astroparticles ; Atmospheric Sciences ; Data reduction ; Image Processing in the Petabyte Era ; Image processing systems ; Physics ; Physics and Astronomy ; Solar physics ; Space Exploration and Astronautics ; Space Sciences (including Extraterrestrial Physics ; Sun</subject><ispartof>Solar physics, 2013-11, Vol.288 (1), p.435-462</ispartof><rights>Springer Science+Business Media Dordrecht 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-f955ded0f28fc2a5e6f25c9e71c633fdb5e547a5d71e402a06c9d6ad25acf9a3</citedby><cites>FETCH-LOGICAL-c349t-f955ded0f28fc2a5e6f25c9e71c633fdb5e547a5d71e402a06c9d6ad25acf9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11207-013-0304-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11207-013-0304-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Banda, J. M.</creatorcontrib><creatorcontrib>Angryk, R. A.</creatorcontrib><creatorcontrib>Martens, P. C. H.</creatorcontrib><title>Steps Toward a Large-Scale Solar Image Data Analysis to Differentiate Solar Phenomena</title><title>Solar physics</title><addtitle>Sol Phys</addtitle><description>We detail the investigation of the first application of several dissimilarity measures for large-scale solar image data analysis. Using a solar-domain-specific benchmark dataset that contains multiple types of phenomena, we analyzed combinations of image parameters with different dissimilarity measures to determine the combinations that will allow us to differentiate between the multiple solar phenomena from both intra-class and inter-class perspectives, where by class we refer to the same types of solar phenomena. We also investigate the problem of reducing data dimensionality by applying multi-dimensional scaling to the dissimilarity matrices that we produced using the previously mentioned combinations. As an early investigation into dimensionality reduction, we investigate by applying multidimensional scaling (MDS) how many MDS components are needed to maintain a good representation of our data (in a new artificial data space) and how many can be discarded to enhance our querying performance. Finally, we present a comparative analysis of several classifiers to determine the quality of the dimensionality reduction achieved with this combination of image parameters, similarity measures, and MDS.</description><subject>Astrophysics and Astroparticles</subject><subject>Atmospheric Sciences</subject><subject>Data reduction</subject><subject>Image Processing in the Petabyte Era</subject><subject>Image processing systems</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Solar physics</subject><subject>Space Exploration and Astronautics</subject><subject>Space Sciences (including Extraterrestrial Physics</subject><subject>Sun</subject><issn>0038-0938</issn><issn>1573-093X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1Lw0AQhhdRsFZ_gLcFL16i-5HNx7G0fhQKCq3gbRk3szUlydbdFNt_b0IURPA0M_C8L8xDyCVnN5yx9DZwLlgaMS4jJlkc7Y_IiKu0u3L5ekxGjMms37NTchbChrE-pUbkZdniNtCV-wRfUKAL8GuMlgYqpEtXgafzGtZIZ9ACnTRQHUIZaOvorLQWPTZtCe0P-vyOjauxgXNyYqEKePE9x2R1f7eaPkaLp4f5dLKIjIzzNrK5UgUWzIrMGgEKEyuUyTHlJpHSFm8KVZyCKlKOMRPAEpMXCRRCgbE5yDG5Hmq33n3sMLS6LoPBqoIG3S5oHqtMiYTHokOv_qAbt_PdPz0VJ0LkiicdxQfKeBeCR6u3vqzBHzRnujemB8-686x7z3rfZcSQCR3brNH_av439AWz4YAo</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Banda, J. M.</creator><creator>Angryk, R. A.</creator><creator>Martens, P. C. H.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20131101</creationdate><title>Steps Toward a Large-Scale Solar Image Data Analysis to Differentiate Solar Phenomena</title><author>Banda, J. M. ; Angryk, R. A. ; Martens, P. C. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-f955ded0f28fc2a5e6f25c9e71c633fdb5e547a5d71e402a06c9d6ad25acf9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Astrophysics and Astroparticles</topic><topic>Atmospheric Sciences</topic><topic>Data reduction</topic><topic>Image Processing in the Petabyte Era</topic><topic>Image processing systems</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Solar physics</topic><topic>Space Exploration and Astronautics</topic><topic>Space Sciences (including Extraterrestrial Physics</topic><topic>Sun</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banda, J. M.</creatorcontrib><creatorcontrib>Angryk, R. A.</creatorcontrib><creatorcontrib>Martens, P. C. H.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Solar physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banda, J. M.</au><au>Angryk, R. A.</au><au>Martens, P. C. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Steps Toward a Large-Scale Solar Image Data Analysis to Differentiate Solar Phenomena</atitle><jtitle>Solar physics</jtitle><stitle>Sol Phys</stitle><date>2013-11-01</date><risdate>2013</risdate><volume>288</volume><issue>1</issue><spage>435</spage><epage>462</epage><pages>435-462</pages><issn>0038-0938</issn><eissn>1573-093X</eissn><abstract>We detail the investigation of the first application of several dissimilarity measures for large-scale solar image data analysis. Using a solar-domain-specific benchmark dataset that contains multiple types of phenomena, we analyzed combinations of image parameters with different dissimilarity measures to determine the combinations that will allow us to differentiate between the multiple solar phenomena from both intra-class and inter-class perspectives, where by class we refer to the same types of solar phenomena. We also investigate the problem of reducing data dimensionality by applying multi-dimensional scaling to the dissimilarity matrices that we produced using the previously mentioned combinations. As an early investigation into dimensionality reduction, we investigate by applying multidimensional scaling (MDS) how many MDS components are needed to maintain a good representation of our data (in a new artificial data space) and how many can be discarded to enhance our querying performance. Finally, we present a comparative analysis of several classifiers to determine the quality of the dimensionality reduction achieved with this combination of image parameters, similarity measures, and MDS.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11207-013-0304-x</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0038-0938
ispartof Solar physics, 2013-11, Vol.288 (1), p.435-462
issn 0038-0938
1573-093X
language eng
recordid cdi_proquest_miscellaneous_1458526142
source SpringerNature Journals
subjects Astrophysics and Astroparticles
Atmospheric Sciences
Data reduction
Image Processing in the Petabyte Era
Image processing systems
Physics
Physics and Astronomy
Solar physics
Space Exploration and Astronautics
Space Sciences (including Extraterrestrial Physics
Sun
title Steps Toward a Large-Scale Solar Image Data Analysis to Differentiate Solar Phenomena
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A30%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Steps%20Toward%20a%20Large-Scale%20Solar%20Image%20Data%20Analysis%20to%20Differentiate%20Solar%20Phenomena&rft.jtitle=Solar%20physics&rft.au=Banda,%20J.%20M.&rft.date=2013-11-01&rft.volume=288&rft.issue=1&rft.spage=435&rft.epage=462&rft.pages=435-462&rft.issn=0038-0938&rft.eissn=1573-093X&rft_id=info:doi/10.1007/s11207-013-0304-x&rft_dat=%3Cproquest_cross%3E3110992641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1446229516&rft_id=info:pmid/&rfr_iscdi=true