Silencing of TaBTF3 gene impairs tolerance to freezing and drought stresses in wheat

Basic transcription factor 3 (BTF3), the β-subunit of the nascent polypeptide-associated complex, is responsible for the transcriptional initiation of RNA polymerase II and is also involved in cell apoptosis, translation initiation regulation, growth, development, and other functions. Here, we repor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular genetics and genomics : MGG 2013-11, Vol.288 (11), p.591-599
Hauptverfasser: Kang, Guozhang, Ma, Hongzhen, Liu, Guoqin, Han, Qiaoxia, Li, Chengwei, Guo, Tiancai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 599
container_issue 11
container_start_page 591
container_title Molecular genetics and genomics : MGG
container_volume 288
creator Kang, Guozhang
Ma, Hongzhen
Liu, Guoqin
Han, Qiaoxia
Li, Chengwei
Guo, Tiancai
description Basic transcription factor 3 (BTF3), the β-subunit of the nascent polypeptide-associated complex, is responsible for the transcriptional initiation of RNA polymerase II and is also involved in cell apoptosis, translation initiation regulation, growth, development, and other functions. Here, we report the impact of BTF3 on abiotic tolerance in higher plants. The transcription levels of the TaBTF3 gene, first isolated from wheat seedlings in our lab, were differentially regulated by diverse abiotic stresses and hormone treatments, including PEG-induced stress (20 % polyethylene glycol 6000), cold (4 °C), salt (100 mM NaCl), abscisic acid (100 μM), methyl jasmonate (50 μM), and salicylic acid (50 μM). Southern blot analysis indicated that, in the wheat genome, TaBTF3 is a multi-copy gene. Compared to BSMV-GFP-infected wheat plants (control), under freezing (−8 °C for 48 h) or drought stress (withholding water for 15 days) conditions, TaBTF3-silenced wheat plants showed lower survival rates, free proline content, and relative water content and higher relative electrical conductivity and water loss rate. These results suggest that silencing of the TaBTF3 gene may impair tolerance to freezing and drought stresses in wheat and that it may be involved in the response to abiotic stresses in higher plants.
doi_str_mv 10.1007/s00438-013-0773-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1458525568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110992441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-cb35c6e8680e702ce98eedeb9d7255cf2c9cc85cd31b2522ddd6a230559847c73</originalsourceid><addsrcrecordid>eNqNkU1rFTEUhoNYbK3-ADca6MbNaHLyOUstVoVCF71dh9zkzHTK3Mw1maHYX28uU4u4EFc5kOd9D4eHkDecfeCMmY-FMSlsw7homDGiUc_ICdfcNFKDeP40c3VMXpZyxxg3GswLcgyilWAlPyGb62HEFIbU06mjG_95cyFojwnpsNv7IRc6TyNmnwLWiXYZ8eEA-xRpzNPS3860zBlLwUKHRO9v0c-vyFHnx4KvH99TcnPxZXP-rbm8-vr9_NNlEyS0cxO2QgWNVluGhkHA1iJG3LbRgFKhg9CGYFWIgm9BAcQYtQfBlGqtNMGIU_J-7d3n6ceCZXa7oQQcR59wWorjUllVq7T9D1QazhRoXdGzv9C7acmpHnKgNEALFirFVyrkqZSMndvnYefzT8eZO9hxqx1X7biDHadq5u1j87LdYXxK_NZRAViBUr9Sj_mP1f9ofbeGOj853-ehuJtrYFwyxpQQRohf0AmhpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1446229282</pqid></control><display><type>article</type><title>Silencing of TaBTF3 gene impairs tolerance to freezing and drought stresses in wheat</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Kang, Guozhang ; Ma, Hongzhen ; Liu, Guoqin ; Han, Qiaoxia ; Li, Chengwei ; Guo, Tiancai</creator><creatorcontrib>Kang, Guozhang ; Ma, Hongzhen ; Liu, Guoqin ; Han, Qiaoxia ; Li, Chengwei ; Guo, Tiancai</creatorcontrib><description>Basic transcription factor 3 (BTF3), the β-subunit of the nascent polypeptide-associated complex, is responsible for the transcriptional initiation of RNA polymerase II and is also involved in cell apoptosis, translation initiation regulation, growth, development, and other functions. Here, we report the impact of BTF3 on abiotic tolerance in higher plants. The transcription levels of the TaBTF3 gene, first isolated from wheat seedlings in our lab, were differentially regulated by diverse abiotic stresses and hormone treatments, including PEG-induced stress (20 % polyethylene glycol 6000), cold (4 °C), salt (100 mM NaCl), abscisic acid (100 μM), methyl jasmonate (50 μM), and salicylic acid (50 μM). Southern blot analysis indicated that, in the wheat genome, TaBTF3 is a multi-copy gene. Compared to BSMV-GFP-infected wheat plants (control), under freezing (−8 °C for 48 h) or drought stress (withholding water for 15 days) conditions, TaBTF3-silenced wheat plants showed lower survival rates, free proline content, and relative water content and higher relative electrical conductivity and water loss rate. These results suggest that silencing of the TaBTF3 gene may impair tolerance to freezing and drought stresses in wheat and that it may be involved in the response to abiotic stresses in higher plants.</description><identifier>ISSN: 1617-4615</identifier><identifier>EISSN: 1617-4623</identifier><identifier>DOI: 10.1007/s00438-013-0773-5</identifier><identifier>PMID: 23942841</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Abiotic stress ; Abscisic acid ; Abscisic Acid - pharmacology ; Acetates - pharmacology ; Animal Genetics and Genomics ; Apoptosis ; Biochemistry ; Biomedical and Life Sciences ; Chloroplasts ; cold tolerance ; Cyclopentanes - pharmacology ; DNA-directed RNA polymerase ; drought ; Droughts ; electrical conductivity ; Freezing ; Gene Expression Regulation, Plant ; Gene Silencing ; Genes ; Genomics ; Human Genetics ; Life Sciences ; methyl jasmonate ; Microbial Genetics and Genomics ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Original Paper ; Oxylipins - pharmacology ; Plant Genetics and Genomics ; Plant Growth Regulators - pharmacology ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants, Genetically Modified ; Polyethylene glycol ; Polypeptides ; Proteins ; RNA polymerase ; RNA, Plant - genetics ; salicylic acid ; Salicylic Acid - pharmacology ; seedlings ; Seedlings - drug effects ; Seedlings - genetics ; Seedlings - physiology ; sodium chloride ; Southern blotting ; Stress, Physiological ; Transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism ; translation (genetics) ; Triticum - drug effects ; Triticum - genetics ; Triticum - physiology ; Triticum aestivum ; Up-Regulation ; Water - physiology ; water content ; water stress ; Wheat</subject><ispartof>Molecular genetics and genomics : MGG, 2013-11, Vol.288 (11), p.591-599</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-cb35c6e8680e702ce98eedeb9d7255cf2c9cc85cd31b2522ddd6a230559847c73</citedby><cites>FETCH-LOGICAL-c429t-cb35c6e8680e702ce98eedeb9d7255cf2c9cc85cd31b2522ddd6a230559847c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00438-013-0773-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00438-013-0773-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23942841$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Guozhang</creatorcontrib><creatorcontrib>Ma, Hongzhen</creatorcontrib><creatorcontrib>Liu, Guoqin</creatorcontrib><creatorcontrib>Han, Qiaoxia</creatorcontrib><creatorcontrib>Li, Chengwei</creatorcontrib><creatorcontrib>Guo, Tiancai</creatorcontrib><title>Silencing of TaBTF3 gene impairs tolerance to freezing and drought stresses in wheat</title><title>Molecular genetics and genomics : MGG</title><addtitle>Mol Genet Genomics</addtitle><addtitle>Mol Genet Genomics</addtitle><description>Basic transcription factor 3 (BTF3), the β-subunit of the nascent polypeptide-associated complex, is responsible for the transcriptional initiation of RNA polymerase II and is also involved in cell apoptosis, translation initiation regulation, growth, development, and other functions. Here, we report the impact of BTF3 on abiotic tolerance in higher plants. The transcription levels of the TaBTF3 gene, first isolated from wheat seedlings in our lab, were differentially regulated by diverse abiotic stresses and hormone treatments, including PEG-induced stress (20 % polyethylene glycol 6000), cold (4 °C), salt (100 mM NaCl), abscisic acid (100 μM), methyl jasmonate (50 μM), and salicylic acid (50 μM). Southern blot analysis indicated that, in the wheat genome, TaBTF3 is a multi-copy gene. Compared to BSMV-GFP-infected wheat plants (control), under freezing (−8 °C for 48 h) or drought stress (withholding water for 15 days) conditions, TaBTF3-silenced wheat plants showed lower survival rates, free proline content, and relative water content and higher relative electrical conductivity and water loss rate. These results suggest that silencing of the TaBTF3 gene may impair tolerance to freezing and drought stresses in wheat and that it may be involved in the response to abiotic stresses in higher plants.</description><subject>Abiotic stress</subject><subject>Abscisic acid</subject><subject>Abscisic Acid - pharmacology</subject><subject>Acetates - pharmacology</subject><subject>Animal Genetics and Genomics</subject><subject>Apoptosis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Chloroplasts</subject><subject>cold tolerance</subject><subject>Cyclopentanes - pharmacology</subject><subject>DNA-directed RNA polymerase</subject><subject>drought</subject><subject>Droughts</subject><subject>electrical conductivity</subject><subject>Freezing</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene Silencing</subject><subject>Genes</subject><subject>Genomics</subject><subject>Human Genetics</subject><subject>Life Sciences</subject><subject>methyl jasmonate</subject><subject>Microbial Genetics and Genomics</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Original Paper</subject><subject>Oxylipins - pharmacology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Growth Regulators - pharmacology</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants, Genetically Modified</subject><subject>Polyethylene glycol</subject><subject>Polypeptides</subject><subject>Proteins</subject><subject>RNA polymerase</subject><subject>RNA, Plant - genetics</subject><subject>salicylic acid</subject><subject>Salicylic Acid - pharmacology</subject><subject>seedlings</subject><subject>Seedlings - drug effects</subject><subject>Seedlings - genetics</subject><subject>Seedlings - physiology</subject><subject>sodium chloride</subject><subject>Southern blotting</subject><subject>Stress, Physiological</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>translation (genetics)</subject><subject>Triticum - drug effects</subject><subject>Triticum - genetics</subject><subject>Triticum - physiology</subject><subject>Triticum aestivum</subject><subject>Up-Regulation</subject><subject>Water - physiology</subject><subject>water content</subject><subject>water stress</subject><subject>Wheat</subject><issn>1617-4615</issn><issn>1617-4623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU1rFTEUhoNYbK3-ADca6MbNaHLyOUstVoVCF71dh9zkzHTK3Mw1maHYX28uU4u4EFc5kOd9D4eHkDecfeCMmY-FMSlsw7homDGiUc_ICdfcNFKDeP40c3VMXpZyxxg3GswLcgyilWAlPyGb62HEFIbU06mjG_95cyFojwnpsNv7IRc6TyNmnwLWiXYZ8eEA-xRpzNPS3860zBlLwUKHRO9v0c-vyFHnx4KvH99TcnPxZXP-rbm8-vr9_NNlEyS0cxO2QgWNVluGhkHA1iJG3LbRgFKhg9CGYFWIgm9BAcQYtQfBlGqtNMGIU_J-7d3n6ceCZXa7oQQcR59wWorjUllVq7T9D1QazhRoXdGzv9C7acmpHnKgNEALFirFVyrkqZSMndvnYefzT8eZO9hxqx1X7biDHadq5u1j87LdYXxK_NZRAViBUr9Sj_mP1f9ofbeGOj853-ehuJtrYFwyxpQQRohf0AmhpQ</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Kang, Guozhang</creator><creator>Ma, Hongzhen</creator><creator>Liu, Guoqin</creator><creator>Han, Qiaoxia</creator><creator>Li, Chengwei</creator><creator>Guo, Tiancai</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20131101</creationdate><title>Silencing of TaBTF3 gene impairs tolerance to freezing and drought stresses in wheat</title><author>Kang, Guozhang ; Ma, Hongzhen ; Liu, Guoqin ; Han, Qiaoxia ; Li, Chengwei ; Guo, Tiancai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-cb35c6e8680e702ce98eedeb9d7255cf2c9cc85cd31b2522ddd6a230559847c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Abiotic stress</topic><topic>Abscisic acid</topic><topic>Abscisic Acid - pharmacology</topic><topic>Acetates - pharmacology</topic><topic>Animal Genetics and Genomics</topic><topic>Apoptosis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Chloroplasts</topic><topic>cold tolerance</topic><topic>Cyclopentanes - pharmacology</topic><topic>DNA-directed RNA polymerase</topic><topic>drought</topic><topic>Droughts</topic><topic>electrical conductivity</topic><topic>Freezing</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene Silencing</topic><topic>Genes</topic><topic>Genomics</topic><topic>Human Genetics</topic><topic>Life Sciences</topic><topic>methyl jasmonate</topic><topic>Microbial Genetics and Genomics</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Original Paper</topic><topic>Oxylipins - pharmacology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Growth Regulators - pharmacology</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants, Genetically Modified</topic><topic>Polyethylene glycol</topic><topic>Polypeptides</topic><topic>Proteins</topic><topic>RNA polymerase</topic><topic>RNA, Plant - genetics</topic><topic>salicylic acid</topic><topic>Salicylic Acid - pharmacology</topic><topic>seedlings</topic><topic>Seedlings - drug effects</topic><topic>Seedlings - genetics</topic><topic>Seedlings - physiology</topic><topic>sodium chloride</topic><topic>Southern blotting</topic><topic>Stress, Physiological</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>translation (genetics)</topic><topic>Triticum - drug effects</topic><topic>Triticum - genetics</topic><topic>Triticum - physiology</topic><topic>Triticum aestivum</topic><topic>Up-Regulation</topic><topic>Water - physiology</topic><topic>water content</topic><topic>water stress</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Guozhang</creatorcontrib><creatorcontrib>Ma, Hongzhen</creatorcontrib><creatorcontrib>Liu, Guoqin</creatorcontrib><creatorcontrib>Han, Qiaoxia</creatorcontrib><creatorcontrib>Li, Chengwei</creatorcontrib><creatorcontrib>Guo, Tiancai</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular genetics and genomics : MGG</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Guozhang</au><au>Ma, Hongzhen</au><au>Liu, Guoqin</au><au>Han, Qiaoxia</au><au>Li, Chengwei</au><au>Guo, Tiancai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silencing of TaBTF3 gene impairs tolerance to freezing and drought stresses in wheat</atitle><jtitle>Molecular genetics and genomics : MGG</jtitle><stitle>Mol Genet Genomics</stitle><addtitle>Mol Genet Genomics</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>288</volume><issue>11</issue><spage>591</spage><epage>599</epage><pages>591-599</pages><issn>1617-4615</issn><eissn>1617-4623</eissn><abstract>Basic transcription factor 3 (BTF3), the β-subunit of the nascent polypeptide-associated complex, is responsible for the transcriptional initiation of RNA polymerase II and is also involved in cell apoptosis, translation initiation regulation, growth, development, and other functions. Here, we report the impact of BTF3 on abiotic tolerance in higher plants. The transcription levels of the TaBTF3 gene, first isolated from wheat seedlings in our lab, were differentially regulated by diverse abiotic stresses and hormone treatments, including PEG-induced stress (20 % polyethylene glycol 6000), cold (4 °C), salt (100 mM NaCl), abscisic acid (100 μM), methyl jasmonate (50 μM), and salicylic acid (50 μM). Southern blot analysis indicated that, in the wheat genome, TaBTF3 is a multi-copy gene. Compared to BSMV-GFP-infected wheat plants (control), under freezing (−8 °C for 48 h) or drought stress (withholding water for 15 days) conditions, TaBTF3-silenced wheat plants showed lower survival rates, free proline content, and relative water content and higher relative electrical conductivity and water loss rate. These results suggest that silencing of the TaBTF3 gene may impair tolerance to freezing and drought stresses in wheat and that it may be involved in the response to abiotic stresses in higher plants.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>23942841</pmid><doi>10.1007/s00438-013-0773-5</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1617-4615
ispartof Molecular genetics and genomics : MGG, 2013-11, Vol.288 (11), p.591-599
issn 1617-4615
1617-4623
language eng
recordid cdi_proquest_miscellaneous_1458525568
source MEDLINE; SpringerNature Journals
subjects Abiotic stress
Abscisic acid
Abscisic Acid - pharmacology
Acetates - pharmacology
Animal Genetics and Genomics
Apoptosis
Biochemistry
Biomedical and Life Sciences
Chloroplasts
cold tolerance
Cyclopentanes - pharmacology
DNA-directed RNA polymerase
drought
Droughts
electrical conductivity
Freezing
Gene Expression Regulation, Plant
Gene Silencing
Genes
Genomics
Human Genetics
Life Sciences
methyl jasmonate
Microbial Genetics and Genomics
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Original Paper
Oxylipins - pharmacology
Plant Genetics and Genomics
Plant Growth Regulators - pharmacology
Plant Proteins - genetics
Plant Proteins - metabolism
Plants, Genetically Modified
Polyethylene glycol
Polypeptides
Proteins
RNA polymerase
RNA, Plant - genetics
salicylic acid
Salicylic Acid - pharmacology
seedlings
Seedlings - drug effects
Seedlings - genetics
Seedlings - physiology
sodium chloride
Southern blotting
Stress, Physiological
Transcription factors
Transcription Factors - genetics
Transcription Factors - metabolism
translation (genetics)
Triticum - drug effects
Triticum - genetics
Triticum - physiology
Triticum aestivum
Up-Regulation
Water - physiology
water content
water stress
Wheat
title Silencing of TaBTF3 gene impairs tolerance to freezing and drought stresses in wheat
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A51%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silencing%20of%20TaBTF3%20gene%20impairs%20tolerance%20to%20freezing%20and%20drought%20stresses%20in%20wheat&rft.jtitle=Molecular%20genetics%20and%20genomics%20:%20MGG&rft.au=Kang,%20Guozhang&rft.date=2013-11-01&rft.volume=288&rft.issue=11&rft.spage=591&rft.epage=599&rft.pages=591-599&rft.issn=1617-4615&rft.eissn=1617-4623&rft_id=info:doi/10.1007/s00438-013-0773-5&rft_dat=%3Cproquest_cross%3E3110992441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1446229282&rft_id=info:pmid/23942841&rfr_iscdi=true