Silencing of TaBTF3 gene impairs tolerance to freezing and drought stresses in wheat
Basic transcription factor 3 (BTF3), the β-subunit of the nascent polypeptide-associated complex, is responsible for the transcriptional initiation of RNA polymerase II and is also involved in cell apoptosis, translation initiation regulation, growth, development, and other functions. Here, we repor...
Gespeichert in:
Veröffentlicht in: | Molecular genetics and genomics : MGG 2013-11, Vol.288 (11), p.591-599 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 599 |
---|---|
container_issue | 11 |
container_start_page | 591 |
container_title | Molecular genetics and genomics : MGG |
container_volume | 288 |
creator | Kang, Guozhang Ma, Hongzhen Liu, Guoqin Han, Qiaoxia Li, Chengwei Guo, Tiancai |
description | Basic transcription factor 3 (BTF3), the β-subunit of the nascent polypeptide-associated complex, is responsible for the transcriptional initiation of RNA polymerase II and is also involved in cell apoptosis, translation initiation regulation, growth, development, and other functions. Here, we report the impact of BTF3 on abiotic tolerance in higher plants. The transcription levels of the TaBTF3 gene, first isolated from wheat seedlings in our lab, were differentially regulated by diverse abiotic stresses and hormone treatments, including PEG-induced stress (20 % polyethylene glycol 6000), cold (4 °C), salt (100 mM NaCl), abscisic acid (100 μM), methyl jasmonate (50 μM), and salicylic acid (50 μM). Southern blot analysis indicated that, in the wheat genome, TaBTF3 is a multi-copy gene. Compared to BSMV-GFP-infected wheat plants (control), under freezing (−8 °C for 48 h) or drought stress (withholding water for 15 days) conditions, TaBTF3-silenced wheat plants showed lower survival rates, free proline content, and relative water content and higher relative electrical conductivity and water loss rate. These results suggest that silencing of the TaBTF3 gene may impair tolerance to freezing and drought stresses in wheat and that it may be involved in the response to abiotic stresses in higher plants. |
doi_str_mv | 10.1007/s00438-013-0773-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1458525568</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3110992441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-cb35c6e8680e702ce98eedeb9d7255cf2c9cc85cd31b2522ddd6a230559847c73</originalsourceid><addsrcrecordid>eNqNkU1rFTEUhoNYbK3-ADca6MbNaHLyOUstVoVCF71dh9zkzHTK3Mw1maHYX28uU4u4EFc5kOd9D4eHkDecfeCMmY-FMSlsw7homDGiUc_ICdfcNFKDeP40c3VMXpZyxxg3GswLcgyilWAlPyGb62HEFIbU06mjG_95cyFojwnpsNv7IRc6TyNmnwLWiXYZ8eEA-xRpzNPS3860zBlLwUKHRO9v0c-vyFHnx4KvH99TcnPxZXP-rbm8-vr9_NNlEyS0cxO2QgWNVluGhkHA1iJG3LbRgFKhg9CGYFWIgm9BAcQYtQfBlGqtNMGIU_J-7d3n6ceCZXa7oQQcR59wWorjUllVq7T9D1QazhRoXdGzv9C7acmpHnKgNEALFirFVyrkqZSMndvnYefzT8eZO9hxqx1X7biDHadq5u1j87LdYXxK_NZRAViBUr9Sj_mP1f9ofbeGOj853-ehuJtrYFwyxpQQRohf0AmhpQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1446229282</pqid></control><display><type>article</type><title>Silencing of TaBTF3 gene impairs tolerance to freezing and drought stresses in wheat</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Kang, Guozhang ; Ma, Hongzhen ; Liu, Guoqin ; Han, Qiaoxia ; Li, Chengwei ; Guo, Tiancai</creator><creatorcontrib>Kang, Guozhang ; Ma, Hongzhen ; Liu, Guoqin ; Han, Qiaoxia ; Li, Chengwei ; Guo, Tiancai</creatorcontrib><description>Basic transcription factor 3 (BTF3), the β-subunit of the nascent polypeptide-associated complex, is responsible for the transcriptional initiation of RNA polymerase II and is also involved in cell apoptosis, translation initiation regulation, growth, development, and other functions. Here, we report the impact of BTF3 on abiotic tolerance in higher plants. The transcription levels of the TaBTF3 gene, first isolated from wheat seedlings in our lab, were differentially regulated by diverse abiotic stresses and hormone treatments, including PEG-induced stress (20 % polyethylene glycol 6000), cold (4 °C), salt (100 mM NaCl), abscisic acid (100 μM), methyl jasmonate (50 μM), and salicylic acid (50 μM). Southern blot analysis indicated that, in the wheat genome, TaBTF3 is a multi-copy gene. Compared to BSMV-GFP-infected wheat plants (control), under freezing (−8 °C for 48 h) or drought stress (withholding water for 15 days) conditions, TaBTF3-silenced wheat plants showed lower survival rates, free proline content, and relative water content and higher relative electrical conductivity and water loss rate. These results suggest that silencing of the TaBTF3 gene may impair tolerance to freezing and drought stresses in wheat and that it may be involved in the response to abiotic stresses in higher plants.</description><identifier>ISSN: 1617-4615</identifier><identifier>EISSN: 1617-4623</identifier><identifier>DOI: 10.1007/s00438-013-0773-5</identifier><identifier>PMID: 23942841</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Abiotic stress ; Abscisic acid ; Abscisic Acid - pharmacology ; Acetates - pharmacology ; Animal Genetics and Genomics ; Apoptosis ; Biochemistry ; Biomedical and Life Sciences ; Chloroplasts ; cold tolerance ; Cyclopentanes - pharmacology ; DNA-directed RNA polymerase ; drought ; Droughts ; electrical conductivity ; Freezing ; Gene Expression Regulation, Plant ; Gene Silencing ; Genes ; Genomics ; Human Genetics ; Life Sciences ; methyl jasmonate ; Microbial Genetics and Genomics ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Original Paper ; Oxylipins - pharmacology ; Plant Genetics and Genomics ; Plant Growth Regulators - pharmacology ; Plant Proteins - genetics ; Plant Proteins - metabolism ; Plants, Genetically Modified ; Polyethylene glycol ; Polypeptides ; Proteins ; RNA polymerase ; RNA, Plant - genetics ; salicylic acid ; Salicylic Acid - pharmacology ; seedlings ; Seedlings - drug effects ; Seedlings - genetics ; Seedlings - physiology ; sodium chloride ; Southern blotting ; Stress, Physiological ; Transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism ; translation (genetics) ; Triticum - drug effects ; Triticum - genetics ; Triticum - physiology ; Triticum aestivum ; Up-Regulation ; Water - physiology ; water content ; water stress ; Wheat</subject><ispartof>Molecular genetics and genomics : MGG, 2013-11, Vol.288 (11), p.591-599</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-cb35c6e8680e702ce98eedeb9d7255cf2c9cc85cd31b2522ddd6a230559847c73</citedby><cites>FETCH-LOGICAL-c429t-cb35c6e8680e702ce98eedeb9d7255cf2c9cc85cd31b2522ddd6a230559847c73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00438-013-0773-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00438-013-0773-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23942841$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Guozhang</creatorcontrib><creatorcontrib>Ma, Hongzhen</creatorcontrib><creatorcontrib>Liu, Guoqin</creatorcontrib><creatorcontrib>Han, Qiaoxia</creatorcontrib><creatorcontrib>Li, Chengwei</creatorcontrib><creatorcontrib>Guo, Tiancai</creatorcontrib><title>Silencing of TaBTF3 gene impairs tolerance to freezing and drought stresses in wheat</title><title>Molecular genetics and genomics : MGG</title><addtitle>Mol Genet Genomics</addtitle><addtitle>Mol Genet Genomics</addtitle><description>Basic transcription factor 3 (BTF3), the β-subunit of the nascent polypeptide-associated complex, is responsible for the transcriptional initiation of RNA polymerase II and is also involved in cell apoptosis, translation initiation regulation, growth, development, and other functions. Here, we report the impact of BTF3 on abiotic tolerance in higher plants. The transcription levels of the TaBTF3 gene, first isolated from wheat seedlings in our lab, were differentially regulated by diverse abiotic stresses and hormone treatments, including PEG-induced stress (20 % polyethylene glycol 6000), cold (4 °C), salt (100 mM NaCl), abscisic acid (100 μM), methyl jasmonate (50 μM), and salicylic acid (50 μM). Southern blot analysis indicated that, in the wheat genome, TaBTF3 is a multi-copy gene. Compared to BSMV-GFP-infected wheat plants (control), under freezing (−8 °C for 48 h) or drought stress (withholding water for 15 days) conditions, TaBTF3-silenced wheat plants showed lower survival rates, free proline content, and relative water content and higher relative electrical conductivity and water loss rate. These results suggest that silencing of the TaBTF3 gene may impair tolerance to freezing and drought stresses in wheat and that it may be involved in the response to abiotic stresses in higher plants.</description><subject>Abiotic stress</subject><subject>Abscisic acid</subject><subject>Abscisic Acid - pharmacology</subject><subject>Acetates - pharmacology</subject><subject>Animal Genetics and Genomics</subject><subject>Apoptosis</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Chloroplasts</subject><subject>cold tolerance</subject><subject>Cyclopentanes - pharmacology</subject><subject>DNA-directed RNA polymerase</subject><subject>drought</subject><subject>Droughts</subject><subject>electrical conductivity</subject><subject>Freezing</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene Silencing</subject><subject>Genes</subject><subject>Genomics</subject><subject>Human Genetics</subject><subject>Life Sciences</subject><subject>methyl jasmonate</subject><subject>Microbial Genetics and Genomics</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Original Paper</subject><subject>Oxylipins - pharmacology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Growth Regulators - pharmacology</subject><subject>Plant Proteins - genetics</subject><subject>Plant Proteins - metabolism</subject><subject>Plants, Genetically Modified</subject><subject>Polyethylene glycol</subject><subject>Polypeptides</subject><subject>Proteins</subject><subject>RNA polymerase</subject><subject>RNA, Plant - genetics</subject><subject>salicylic acid</subject><subject>Salicylic Acid - pharmacology</subject><subject>seedlings</subject><subject>Seedlings - drug effects</subject><subject>Seedlings - genetics</subject><subject>Seedlings - physiology</subject><subject>sodium chloride</subject><subject>Southern blotting</subject><subject>Stress, Physiological</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>translation (genetics)</subject><subject>Triticum - drug effects</subject><subject>Triticum - genetics</subject><subject>Triticum - physiology</subject><subject>Triticum aestivum</subject><subject>Up-Regulation</subject><subject>Water - physiology</subject><subject>water content</subject><subject>water stress</subject><subject>Wheat</subject><issn>1617-4615</issn><issn>1617-4623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU1rFTEUhoNYbK3-ADca6MbNaHLyOUstVoVCF71dh9zkzHTK3Mw1maHYX28uU4u4EFc5kOd9D4eHkDecfeCMmY-FMSlsw7homDGiUc_ICdfcNFKDeP40c3VMXpZyxxg3GswLcgyilWAlPyGb62HEFIbU06mjG_95cyFojwnpsNv7IRc6TyNmnwLWiXYZ8eEA-xRpzNPS3860zBlLwUKHRO9v0c-vyFHnx4KvH99TcnPxZXP-rbm8-vr9_NNlEyS0cxO2QgWNVluGhkHA1iJG3LbRgFKhg9CGYFWIgm9BAcQYtQfBlGqtNMGIU_J-7d3n6ceCZXa7oQQcR59wWorjUllVq7T9D1QazhRoXdGzv9C7acmpHnKgNEALFirFVyrkqZSMndvnYefzT8eZO9hxqx1X7biDHadq5u1j87LdYXxK_NZRAViBUr9Sj_mP1f9ofbeGOj853-ehuJtrYFwyxpQQRohf0AmhpQ</recordid><startdate>20131101</startdate><enddate>20131101</enddate><creator>Kang, Guozhang</creator><creator>Ma, Hongzhen</creator><creator>Liu, Guoqin</creator><creator>Han, Qiaoxia</creator><creator>Li, Chengwei</creator><creator>Guo, Tiancai</creator><general>Springer-Verlag</general><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20131101</creationdate><title>Silencing of TaBTF3 gene impairs tolerance to freezing and drought stresses in wheat</title><author>Kang, Guozhang ; Ma, Hongzhen ; Liu, Guoqin ; Han, Qiaoxia ; Li, Chengwei ; Guo, Tiancai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-cb35c6e8680e702ce98eedeb9d7255cf2c9cc85cd31b2522ddd6a230559847c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Abiotic stress</topic><topic>Abscisic acid</topic><topic>Abscisic Acid - pharmacology</topic><topic>Acetates - pharmacology</topic><topic>Animal Genetics and Genomics</topic><topic>Apoptosis</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Chloroplasts</topic><topic>cold tolerance</topic><topic>Cyclopentanes - pharmacology</topic><topic>DNA-directed RNA polymerase</topic><topic>drought</topic><topic>Droughts</topic><topic>electrical conductivity</topic><topic>Freezing</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene Silencing</topic><topic>Genes</topic><topic>Genomics</topic><topic>Human Genetics</topic><topic>Life Sciences</topic><topic>methyl jasmonate</topic><topic>Microbial Genetics and Genomics</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Original Paper</topic><topic>Oxylipins - pharmacology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Growth Regulators - pharmacology</topic><topic>Plant Proteins - genetics</topic><topic>Plant Proteins - metabolism</topic><topic>Plants, Genetically Modified</topic><topic>Polyethylene glycol</topic><topic>Polypeptides</topic><topic>Proteins</topic><topic>RNA polymerase</topic><topic>RNA, Plant - genetics</topic><topic>salicylic acid</topic><topic>Salicylic Acid - pharmacology</topic><topic>seedlings</topic><topic>Seedlings - drug effects</topic><topic>Seedlings - genetics</topic><topic>Seedlings - physiology</topic><topic>sodium chloride</topic><topic>Southern blotting</topic><topic>Stress, Physiological</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>translation (genetics)</topic><topic>Triticum - drug effects</topic><topic>Triticum - genetics</topic><topic>Triticum - physiology</topic><topic>Triticum aestivum</topic><topic>Up-Regulation</topic><topic>Water - physiology</topic><topic>water content</topic><topic>water stress</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Guozhang</creatorcontrib><creatorcontrib>Ma, Hongzhen</creatorcontrib><creatorcontrib>Liu, Guoqin</creatorcontrib><creatorcontrib>Han, Qiaoxia</creatorcontrib><creatorcontrib>Li, Chengwei</creatorcontrib><creatorcontrib>Guo, Tiancai</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular genetics and genomics : MGG</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Guozhang</au><au>Ma, Hongzhen</au><au>Liu, Guoqin</au><au>Han, Qiaoxia</au><au>Li, Chengwei</au><au>Guo, Tiancai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silencing of TaBTF3 gene impairs tolerance to freezing and drought stresses in wheat</atitle><jtitle>Molecular genetics and genomics : MGG</jtitle><stitle>Mol Genet Genomics</stitle><addtitle>Mol Genet Genomics</addtitle><date>2013-11-01</date><risdate>2013</risdate><volume>288</volume><issue>11</issue><spage>591</spage><epage>599</epage><pages>591-599</pages><issn>1617-4615</issn><eissn>1617-4623</eissn><abstract>Basic transcription factor 3 (BTF3), the β-subunit of the nascent polypeptide-associated complex, is responsible for the transcriptional initiation of RNA polymerase II and is also involved in cell apoptosis, translation initiation regulation, growth, development, and other functions. Here, we report the impact of BTF3 on abiotic tolerance in higher plants. The transcription levels of the TaBTF3 gene, first isolated from wheat seedlings in our lab, were differentially regulated by diverse abiotic stresses and hormone treatments, including PEG-induced stress (20 % polyethylene glycol 6000), cold (4 °C), salt (100 mM NaCl), abscisic acid (100 μM), methyl jasmonate (50 μM), and salicylic acid (50 μM). Southern blot analysis indicated that, in the wheat genome, TaBTF3 is a multi-copy gene. Compared to BSMV-GFP-infected wheat plants (control), under freezing (−8 °C for 48 h) or drought stress (withholding water for 15 days) conditions, TaBTF3-silenced wheat plants showed lower survival rates, free proline content, and relative water content and higher relative electrical conductivity and water loss rate. These results suggest that silencing of the TaBTF3 gene may impair tolerance to freezing and drought stresses in wheat and that it may be involved in the response to abiotic stresses in higher plants.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>23942841</pmid><doi>10.1007/s00438-013-0773-5</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1617-4615 |
ispartof | Molecular genetics and genomics : MGG, 2013-11, Vol.288 (11), p.591-599 |
issn | 1617-4615 1617-4623 |
language | eng |
recordid | cdi_proquest_miscellaneous_1458525568 |
source | MEDLINE; SpringerNature Journals |
subjects | Abiotic stress Abscisic acid Abscisic Acid - pharmacology Acetates - pharmacology Animal Genetics and Genomics Apoptosis Biochemistry Biomedical and Life Sciences Chloroplasts cold tolerance Cyclopentanes - pharmacology DNA-directed RNA polymerase drought Droughts electrical conductivity Freezing Gene Expression Regulation, Plant Gene Silencing Genes Genomics Human Genetics Life Sciences methyl jasmonate Microbial Genetics and Genomics Nuclear Proteins - genetics Nuclear Proteins - metabolism Original Paper Oxylipins - pharmacology Plant Genetics and Genomics Plant Growth Regulators - pharmacology Plant Proteins - genetics Plant Proteins - metabolism Plants, Genetically Modified Polyethylene glycol Polypeptides Proteins RNA polymerase RNA, Plant - genetics salicylic acid Salicylic Acid - pharmacology seedlings Seedlings - drug effects Seedlings - genetics Seedlings - physiology sodium chloride Southern blotting Stress, Physiological Transcription factors Transcription Factors - genetics Transcription Factors - metabolism translation (genetics) Triticum - drug effects Triticum - genetics Triticum - physiology Triticum aestivum Up-Regulation Water - physiology water content water stress Wheat |
title | Silencing of TaBTF3 gene impairs tolerance to freezing and drought stresses in wheat |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A51%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silencing%20of%20TaBTF3%20gene%20impairs%20tolerance%20to%20freezing%20and%20drought%20stresses%20in%20wheat&rft.jtitle=Molecular%20genetics%20and%20genomics%20:%20MGG&rft.au=Kang,%20Guozhang&rft.date=2013-11-01&rft.volume=288&rft.issue=11&rft.spage=591&rft.epage=599&rft.pages=591-599&rft.issn=1617-4615&rft.eissn=1617-4623&rft_id=info:doi/10.1007/s00438-013-0773-5&rft_dat=%3Cproquest_cross%3E3110992441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1446229282&rft_id=info:pmid/23942841&rfr_iscdi=true |