A 2.8 Å Fe-Fe separation in the Fe2(III/IV) intermediate, X, from Escherichia coli ribonucleotide reductase

A class Ia ribonucleotide reductase (RNR) employs a μ-oxo-Fe2(III/III)/tyrosyl radical cofactor in its β subunit to oxidize a cysteine residue ~35 Å away in its α subunit; the resultant cysteine radical initiates substrate reduction. During self-assembly of the Escherichia coli RNR-β cofactor, react...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2013-11, Vol.135 (45), p.16758-16761
Hauptverfasser: Dassama, Laura M K, Silakov, Alexey, Krest, Courtney M, Calixto, Julio C, Krebs, Carsten, Bollinger, Jr, J Martin, Green, Michael T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16761
container_issue 45
container_start_page 16758
container_title Journal of the American Chemical Society
container_volume 135
creator Dassama, Laura M K
Silakov, Alexey
Krest, Courtney M
Calixto, Julio C
Krebs, Carsten
Bollinger, Jr, J Martin
Green, Michael T
description A class Ia ribonucleotide reductase (RNR) employs a μ-oxo-Fe2(III/III)/tyrosyl radical cofactor in its β subunit to oxidize a cysteine residue ~35 Å away in its α subunit; the resultant cysteine radical initiates substrate reduction. During self-assembly of the Escherichia coli RNR-β cofactor, reaction of the protein's Fe2(II/II) complex with O2 results in accumulation of an Fe2(III/IV) cluster, termed X, which oxidizes the adjacent tyrosine (Y122) to the radical (Y122(•)) as the cluster is converted to the μ-oxo-Fe2(III/III) product. As the first high-valent non-heme-iron enzyme complex to be identified and the key activating intermediate of class Ia RNRs, X has been the focus of intensive efforts to determine its structure. Initial characterization by extended X-ray absorption fine structure (EXAFS) spectroscopy yielded a Fe-Fe separation (d(Fe-Fe)) of 2.5 Å, which was interpreted to imply the presence of three single-atom bridges (O(2-), HO(-), and/or μ-1,1-carboxylates). This short distance has been irreconcilable with computational and synthetic models, which all have d(Fe-Fe) ≥ 2.7 Å. To resolve this conundrum, we revisited the EXAFS characterization of X. Assuming that samples containing increased concentrations of the intermediate would yield EXAFS data of improved quality, we applied our recently developed method of generating O2 in situ from chlorite using the enzyme chlorite dismutase to prepare X at ~2.0 mM, more than 2.5 times the concentration realized in the previous EXAFS study. The measured d(Fe-Fe) = 2.78 Å is fully consistent with computational models containing a (μ-oxo)2-Fe2(III/IV) core. Correction of the d(Fe-Fe) brings the experimental data and computational models into full conformity and informs analysis of the mechanism by which X generates Y122(•).
doi_str_mv 10.1021/ja407438p
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1458505944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1458505944</sourcerecordid><originalsourceid>FETCH-LOGICAL-p126t-f66fa9f71136b082699cf3773454cc66ed3e15c5bc7b69411792d5fd0fe2fb153</originalsourceid><addsrcrecordid>eNo1kEFLwzAcxYMgbk4PfgHJccK6JWmStscxNi0MvKh4K2n6D8tom5qkBz-An8wvZkE9PfjxeLz3ELqjZE0Jo5uz4iTjaT5coDkVjCSCMjlD1yGcCSGc5fQKzRgnBSc5n6N2i9k6x99f-ADJAXCAQXkVreux7XE8wcTZsizLTfn2MKEIvoPGqggr_L7CxrsO74M-gbf6ZBXWrrXY29r1o27BRdsA9tCMOqoAN-jSqDbA7Z8u0Oth_7J7So7Pj-Vue0yGqWtMjJRGFSajNJU1yZksCm3SLEu54FpLCU0KVGhR66yWBac0K1gjTEMMMFNTkS7Q8jd38O5jhBCrzgYNbat6cGOoKBe5IKLgfLLe_1nHehpWDd52yn9W_w-lP55bY2s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1458505944</pqid></control><display><type>article</type><title>A 2.8 Å Fe-Fe separation in the Fe2(III/IV) intermediate, X, from Escherichia coli ribonucleotide reductase</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Dassama, Laura M K ; Silakov, Alexey ; Krest, Courtney M ; Calixto, Julio C ; Krebs, Carsten ; Bollinger, Jr, J Martin ; Green, Michael T</creator><creatorcontrib>Dassama, Laura M K ; Silakov, Alexey ; Krest, Courtney M ; Calixto, Julio C ; Krebs, Carsten ; Bollinger, Jr, J Martin ; Green, Michael T</creatorcontrib><description>A class Ia ribonucleotide reductase (RNR) employs a μ-oxo-Fe2(III/III)/tyrosyl radical cofactor in its β subunit to oxidize a cysteine residue ~35 Å away in its α subunit; the resultant cysteine radical initiates substrate reduction. During self-assembly of the Escherichia coli RNR-β cofactor, reaction of the protein's Fe2(II/II) complex with O2 results in accumulation of an Fe2(III/IV) cluster, termed X, which oxidizes the adjacent tyrosine (Y122) to the radical (Y122(•)) as the cluster is converted to the μ-oxo-Fe2(III/III) product. As the first high-valent non-heme-iron enzyme complex to be identified and the key activating intermediate of class Ia RNRs, X has been the focus of intensive efforts to determine its structure. Initial characterization by extended X-ray absorption fine structure (EXAFS) spectroscopy yielded a Fe-Fe separation (d(Fe-Fe)) of 2.5 Å, which was interpreted to imply the presence of three single-atom bridges (O(2-), HO(-), and/or μ-1,1-carboxylates). This short distance has been irreconcilable with computational and synthetic models, which all have d(Fe-Fe) ≥ 2.7 Å. To resolve this conundrum, we revisited the EXAFS characterization of X. Assuming that samples containing increased concentrations of the intermediate would yield EXAFS data of improved quality, we applied our recently developed method of generating O2 in situ from chlorite using the enzyme chlorite dismutase to prepare X at ~2.0 mM, more than 2.5 times the concentration realized in the previous EXAFS study. The measured d(Fe-Fe) = 2.78 Å is fully consistent with computational models containing a (μ-oxo)2-Fe2(III/IV) core. Correction of the d(Fe-Fe) brings the experimental data and computational models into full conformity and informs analysis of the mechanism by which X generates Y122(•).</description><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/ja407438p</identifier><identifier>PMID: 24094084</identifier><language>eng</language><publisher>United States</publisher><subject>Crystallography, X-Ray ; Escherichia coli - chemistry ; Escherichia coli - enzymology ; Iron - chemistry ; Iron - metabolism ; Models, Molecular ; Oxidation-Reduction ; Ribonucleotide Reductases - chemistry ; Ribonucleotide Reductases - metabolism ; Spectroscopy, Mossbauer ; Tyrosine - analogs &amp; derivatives ; Tyrosine - metabolism</subject><ispartof>Journal of the American Chemical Society, 2013-11, Vol.135 (45), p.16758-16761</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24094084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dassama, Laura M K</creatorcontrib><creatorcontrib>Silakov, Alexey</creatorcontrib><creatorcontrib>Krest, Courtney M</creatorcontrib><creatorcontrib>Calixto, Julio C</creatorcontrib><creatorcontrib>Krebs, Carsten</creatorcontrib><creatorcontrib>Bollinger, Jr, J Martin</creatorcontrib><creatorcontrib>Green, Michael T</creatorcontrib><title>A 2.8 Å Fe-Fe separation in the Fe2(III/IV) intermediate, X, from Escherichia coli ribonucleotide reductase</title><title>Journal of the American Chemical Society</title><addtitle>J Am Chem Soc</addtitle><description>A class Ia ribonucleotide reductase (RNR) employs a μ-oxo-Fe2(III/III)/tyrosyl radical cofactor in its β subunit to oxidize a cysteine residue ~35 Å away in its α subunit; the resultant cysteine radical initiates substrate reduction. During self-assembly of the Escherichia coli RNR-β cofactor, reaction of the protein's Fe2(II/II) complex with O2 results in accumulation of an Fe2(III/IV) cluster, termed X, which oxidizes the adjacent tyrosine (Y122) to the radical (Y122(•)) as the cluster is converted to the μ-oxo-Fe2(III/III) product. As the first high-valent non-heme-iron enzyme complex to be identified and the key activating intermediate of class Ia RNRs, X has been the focus of intensive efforts to determine its structure. Initial characterization by extended X-ray absorption fine structure (EXAFS) spectroscopy yielded a Fe-Fe separation (d(Fe-Fe)) of 2.5 Å, which was interpreted to imply the presence of three single-atom bridges (O(2-), HO(-), and/or μ-1,1-carboxylates). This short distance has been irreconcilable with computational and synthetic models, which all have d(Fe-Fe) ≥ 2.7 Å. To resolve this conundrum, we revisited the EXAFS characterization of X. Assuming that samples containing increased concentrations of the intermediate would yield EXAFS data of improved quality, we applied our recently developed method of generating O2 in situ from chlorite using the enzyme chlorite dismutase to prepare X at ~2.0 mM, more than 2.5 times the concentration realized in the previous EXAFS study. The measured d(Fe-Fe) = 2.78 Å is fully consistent with computational models containing a (μ-oxo)2-Fe2(III/IV) core. Correction of the d(Fe-Fe) brings the experimental data and computational models into full conformity and informs analysis of the mechanism by which X generates Y122(•).</description><subject>Crystallography, X-Ray</subject><subject>Escherichia coli - chemistry</subject><subject>Escherichia coli - enzymology</subject><subject>Iron - chemistry</subject><subject>Iron - metabolism</subject><subject>Models, Molecular</subject><subject>Oxidation-Reduction</subject><subject>Ribonucleotide Reductases - chemistry</subject><subject>Ribonucleotide Reductases - metabolism</subject><subject>Spectroscopy, Mossbauer</subject><subject>Tyrosine - analogs &amp; derivatives</subject><subject>Tyrosine - metabolism</subject><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo1kEFLwzAcxYMgbk4PfgHJccK6JWmStscxNi0MvKh4K2n6D8tom5qkBz-An8wvZkE9PfjxeLz3ELqjZE0Jo5uz4iTjaT5coDkVjCSCMjlD1yGcCSGc5fQKzRgnBSc5n6N2i9k6x99f-ADJAXCAQXkVreux7XE8wcTZsizLTfn2MKEIvoPGqggr_L7CxrsO74M-gbf6ZBXWrrXY29r1o27BRdsA9tCMOqoAN-jSqDbA7Z8u0Oth_7J7So7Pj-Vue0yGqWtMjJRGFSajNJU1yZksCm3SLEu54FpLCU0KVGhR66yWBac0K1gjTEMMMFNTkS7Q8jd38O5jhBCrzgYNbat6cGOoKBe5IKLgfLLe_1nHehpWDd52yn9W_w-lP55bY2s</recordid><startdate>20131113</startdate><enddate>20131113</enddate><creator>Dassama, Laura M K</creator><creator>Silakov, Alexey</creator><creator>Krest, Courtney M</creator><creator>Calixto, Julio C</creator><creator>Krebs, Carsten</creator><creator>Bollinger, Jr, J Martin</creator><creator>Green, Michael T</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20131113</creationdate><title>A 2.8 Å Fe-Fe separation in the Fe2(III/IV) intermediate, X, from Escherichia coli ribonucleotide reductase</title><author>Dassama, Laura M K ; Silakov, Alexey ; Krest, Courtney M ; Calixto, Julio C ; Krebs, Carsten ; Bollinger, Jr, J Martin ; Green, Michael T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p126t-f66fa9f71136b082699cf3773454cc66ed3e15c5bc7b69411792d5fd0fe2fb153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Crystallography, X-Ray</topic><topic>Escherichia coli - chemistry</topic><topic>Escherichia coli - enzymology</topic><topic>Iron - chemistry</topic><topic>Iron - metabolism</topic><topic>Models, Molecular</topic><topic>Oxidation-Reduction</topic><topic>Ribonucleotide Reductases - chemistry</topic><topic>Ribonucleotide Reductases - metabolism</topic><topic>Spectroscopy, Mossbauer</topic><topic>Tyrosine - analogs &amp; derivatives</topic><topic>Tyrosine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dassama, Laura M K</creatorcontrib><creatorcontrib>Silakov, Alexey</creatorcontrib><creatorcontrib>Krest, Courtney M</creatorcontrib><creatorcontrib>Calixto, Julio C</creatorcontrib><creatorcontrib>Krebs, Carsten</creatorcontrib><creatorcontrib>Bollinger, Jr, J Martin</creatorcontrib><creatorcontrib>Green, Michael T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dassama, Laura M K</au><au>Silakov, Alexey</au><au>Krest, Courtney M</au><au>Calixto, Julio C</au><au>Krebs, Carsten</au><au>Bollinger, Jr, J Martin</au><au>Green, Michael T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 2.8 Å Fe-Fe separation in the Fe2(III/IV) intermediate, X, from Escherichia coli ribonucleotide reductase</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J Am Chem Soc</addtitle><date>2013-11-13</date><risdate>2013</risdate><volume>135</volume><issue>45</issue><spage>16758</spage><epage>16761</epage><pages>16758-16761</pages><eissn>1520-5126</eissn><abstract>A class Ia ribonucleotide reductase (RNR) employs a μ-oxo-Fe2(III/III)/tyrosyl radical cofactor in its β subunit to oxidize a cysteine residue ~35 Å away in its α subunit; the resultant cysteine radical initiates substrate reduction. During self-assembly of the Escherichia coli RNR-β cofactor, reaction of the protein's Fe2(II/II) complex with O2 results in accumulation of an Fe2(III/IV) cluster, termed X, which oxidizes the adjacent tyrosine (Y122) to the radical (Y122(•)) as the cluster is converted to the μ-oxo-Fe2(III/III) product. As the first high-valent non-heme-iron enzyme complex to be identified and the key activating intermediate of class Ia RNRs, X has been the focus of intensive efforts to determine its structure. Initial characterization by extended X-ray absorption fine structure (EXAFS) spectroscopy yielded a Fe-Fe separation (d(Fe-Fe)) of 2.5 Å, which was interpreted to imply the presence of three single-atom bridges (O(2-), HO(-), and/or μ-1,1-carboxylates). This short distance has been irreconcilable with computational and synthetic models, which all have d(Fe-Fe) ≥ 2.7 Å. To resolve this conundrum, we revisited the EXAFS characterization of X. Assuming that samples containing increased concentrations of the intermediate would yield EXAFS data of improved quality, we applied our recently developed method of generating O2 in situ from chlorite using the enzyme chlorite dismutase to prepare X at ~2.0 mM, more than 2.5 times the concentration realized in the previous EXAFS study. The measured d(Fe-Fe) = 2.78 Å is fully consistent with computational models containing a (μ-oxo)2-Fe2(III/IV) core. Correction of the d(Fe-Fe) brings the experimental data and computational models into full conformity and informs analysis of the mechanism by which X generates Y122(•).</abstract><cop>United States</cop><pmid>24094084</pmid><doi>10.1021/ja407438p</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1520-5126
ispartof Journal of the American Chemical Society, 2013-11, Vol.135 (45), p.16758-16761
issn 1520-5126
language eng
recordid cdi_proquest_miscellaneous_1458505944
source MEDLINE; American Chemical Society Journals
subjects Crystallography, X-Ray
Escherichia coli - chemistry
Escherichia coli - enzymology
Iron - chemistry
Iron - metabolism
Models, Molecular
Oxidation-Reduction
Ribonucleotide Reductases - chemistry
Ribonucleotide Reductases - metabolism
Spectroscopy, Mossbauer
Tyrosine - analogs & derivatives
Tyrosine - metabolism
title A 2.8 Å Fe-Fe separation in the Fe2(III/IV) intermediate, X, from Escherichia coli ribonucleotide reductase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A31%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%202.8%20%C3%85%20Fe-Fe%20separation%20in%20the%20Fe2(III/IV)%20intermediate,%20X,%20from%20Escherichia%20coli%20ribonucleotide%20reductase&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Dassama,%20Laura%20M%20K&rft.date=2013-11-13&rft.volume=135&rft.issue=45&rft.spage=16758&rft.epage=16761&rft.pages=16758-16761&rft.eissn=1520-5126&rft_id=info:doi/10.1021/ja407438p&rft_dat=%3Cproquest_pubme%3E1458505944%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1458505944&rft_id=info:pmid/24094084&rfr_iscdi=true